Publications by authors named "Mark Duquette"

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.

View Article and Find Full Text PDF

Cancer metastasis is a major contributor to patient morbidity and mortality, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs.

View Article and Find Full Text PDF

Wnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and β-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model.

View Article and Find Full Text PDF
Article Synopsis
  • Lymphatic muscle cells (LMCs) help move lymph fluid in the body, which is important for keeping tissues healthy and fighting off infections.
  • When these cells get damaged, it can lead to health problems, but we don't know enough about their role in diseases.
  • Researchers created a detailed map of LMCs in mouse skin to learn how they change with age and how inflammation affects their ability to work, which could help find new treatments for related health issues.
View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cells have revolutionized the treatment of multiple types of hematological malignancies, but have shown limited efficacy in patients with glioblastoma (GBM) or other solid tumors. This may be largely due to the immunosuppressive tumor microenvironment (TME) that compromises CAR-T cells' delivery and antitumor activity. We previously showed that blocking vascular endothelial growth factor (VEGF) signaling can normalize tumor vessels in murine and human tumors, including GBM, breast, liver, and rectal carcinomas.

View Article and Find Full Text PDF
Article Synopsis
  • - ICBs have not been successful in phase III glioblastoma trials, and our research shows they can cause cerebral edema due to inflammatory responses, disrupting the blood-tumor barrier.
  • - We found that using the angiotensin receptor blocker losartan, instead of corticosteroids, can reduce this edema and even cure 20% of treated mice, with results improving to 40% when combined with standard treatment.
  • - We identified a specific immune signature in tumors that can predict long-term survival when losartan is combined with ICBs, suggesting a promising avenue for future glioblastoma therapies.
View Article and Find Full Text PDF

Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain.

View Article and Find Full Text PDF

BRAF(V600E) mutation exerts an essential oncogenic function in many tumors, including papillary thyroid carcinoma (PTC). Although BRAF(V600E) inhibitors are available, lack of response has been frequently observed. To study the mechanism underlying intrinsic resistance to the mutant BRAF(V600E) selective inhibitor vemurafenib, we established short-term primary cell cultures of human metastatic/recurrent BRAF(V600E)-PTC, intrathyroidal BRAF(V600E)-PTC, and normal thyroid (NT).

View Article and Find Full Text PDF

It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration.

View Article and Find Full Text PDF

Most women are diagnosed with epithelial ovarian cancer (EOC) at advanced stage, where therapies have limited effectiveness and the long-term survival rate is low. We evaluated the effects of combined antiangiogenic and chemotherapy treatments on advanced stage EOC. Treatment of EOC cells with a recombinant version of the thrombospondin-1 type I repeats (3TSR) induced more apoptotic cell death (36.

View Article and Find Full Text PDF

Myopericytoma (MPC) is a rare tumor with perivascular proliferation of pluripotent stem-cell-like pericytes. Although indolent, MPC may be locally aggressive with recurrent disease. The pathogenesis and diagnostic biomarkers of MPC are poorly understood.

View Article and Find Full Text PDF

The thrombospondins (TSPs) are a family of matricellular proteins that regulate cellular phenotype through interactions with a myriad of other proteins and proteoglycans. We have identified a novel interaction of the members of the TSP gene family with stromal interaction molecule 1 (STIM1). This association is robust since it is preserved in Triton X-100, can be detected with multiple anti-TSP-1 and anti-STIM1 antibodies, and is detected in a wide range of cell types.

View Article and Find Full Text PDF

Background And Rationale: Anaplastic thyroid cancer (ATC) is characterized by pleomorphic cells, has a poor prognosis, is highly devastating disease, and is not curable. No reliable biomarkers of metastatic potential, helpful for early diagnosis of ATC and therapeutic response have been found yet. Thrombospondin-1 (TSP-1) plays a fundamental role in cancer progression by regulating cell stromal cross-talk in the tumor microenvironment.

View Article and Find Full Text PDF

Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T.

View Article and Find Full Text PDF

CD36 plays a critical role in the inhibition of angiogenesis through binding to the type 1 repeats of thrombospondin-1 (TSP-1) and activating Fyn tyrosine kinase and MAPK pathways. Here, we reveal a novel association of CD36 with VEGFR-2 and spleen tyrosine kinase (Syk). We also address the correlation between the expression of CD36 and Syk by demonstrating that overexpression of CD36 in HUVECs up-regulates endogenous Syk expression.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a well-established stimulator of vascular permeability and angiogenesis, whereas thrombospondin-1 (TSP-1) is a potent angiogenic inhibitor. In this study, we have found that the TSP-1 receptors CD36 and beta1 integrin associate with the VEGF receptor 2 (VEGFR2). The coclustering of receptors that regulate angiogenesis may provide the endothelial cell with a platform for integration of positive and negative signals in the plane of the membrane.

View Article and Find Full Text PDF

As tumor development relies on a coordination of angiogenesis and tumor growth, an efficient antitumor strategy should target both the tumor and its associated vessels. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a tumor-selective manner. Additionally, thrombospondin-1, a naturally occurring inhibitor of angiogenesis, and a recombinant protein containing functional domains of thrombospondin-1, 3TSR, have been shown to be necessary and sufficient to inhibit tumor angiogenesis.

View Article and Find Full Text PDF

Cartilage oligomeric matrix protein (COMP), or thrombospondin-5 (TSP-5), is a secreted glycoprotein that is important for growth plate organization and function. Mutations in COMP cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). In this study, we determined the structure of a recombinant protein that contains the last epidermal growth factor repeat, the type 3 repeats and the C-terminal domain (CTD) of COMP to 3.

View Article and Find Full Text PDF

The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin.

View Article and Find Full Text PDF

Thrombospondin-1 (TSP-1) has been proposed to have both pro-metastatic and anti-metastatic properties. To elucidate its role in breast cancer metastasis, we compared tumor progression in the polyomavirus middle T antigen (Pyt) transgenic mouse and the TSP-1-null Pyt transgenic mouse. We characterized the tumors in these mice at 45, 60 and 90 days of age.

View Article and Find Full Text PDF

Thromboapondin 1 (TSP-1) is a trimeric matricellular protein that is expressed by many cells. It contains several different domains that allow it to participate in cell adhesion, cell migration, and cell signaling. Recently TSP-1 has been shown to activate transforming growth factor beta (TGF-beta) and to inhibit both angiogenesis and tumor growth.

View Article and Find Full Text PDF

Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography.

View Article and Find Full Text PDF

Thrombospondin-1 is one of most important natural angiogenic inhibitors. The three thrombospondin-1 type 1 repeats (3TSR), an anti-angiogenic domain of thrombospondin-1, is a promising novel agent for anti-angiogenic treatment. In the present study, we showed 3TSR was biologically stable at least for 7 days in mini-osmotic pumps in vivo, and continuous administration of 3TSR decreased the dosage and improved the potency of therapy in an orthotopic pancreatic cancer model.

View Article and Find Full Text PDF