Publications by authors named "Mark Dobrovolski"

Article Synopsis
  • Methyl-d-aspartate receptors (NMDARs) are crucial for brain functions like synaptic transmission and plasticity, and variants in their genes are linked to neurodevelopmental disorders, but the exact mechanisms remain unclear.
  • Researchers developed a transgenic mouse model with a specific variant (GluN2B(L825V)) found in a patient with intellectual disability and autism to study its effects on brain function.
  • Findings showed that the variant led to lower NMDAR currents and behavior issues like reduced activity and anxiety, suggesting that this mouse model could help in understanding the neurodevelopmental impacts of the variant.
View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening.

View Article and Find Full Text PDF

CRISPR arrays are prokaryotic genomic loci consisting of repeat sequences alternating with unique spacers acquired from foreign nucleic acids. As one of the fastest-evolving parts of the genome, CRISPR arrays can be used to differentiate closely related prokaryotic lineages and track individual strains in prokaryotic communities. However, the assembly of full-length CRISPR arrays sequences remains a problem.

View Article and Find Full Text PDF