In a previous paper [M. Dittner and B. Hartke, J.
View Article and Find Full Text PDFThe search for, and understanding of, good catalysts for chemical reactions is a central issue for chemists. Here, we present first steps toward developing a general computational framework to better support this task. This framework combines efficient, unbiased global optimization techniques with an abstract representation of the catalytic environment, to shrink the search space.
View Article and Find Full Text PDFJ Phys Chem Lett
April 2016
We report a first femtosecond time-resolved transient absorption study of the photoinduced ultrafast dynamics of trans-azobenzene (AB) on gold nanoparticles (AuNPs). The observed changes in optical density following excitation at λ = 357 nm were analyzed by using temperature-dependent Mie theory and by Lorentzian band fitting to disentangle the ultrafast relaxation of the local surface plasmon resonance (LSPR) excitation of the Au core and the electronic deactivation of the attached AB ligands. The analysis of the dynamics associated with the AB photochrome yielded lifetime constants of τ1 = 1.
View Article and Find Full Text PDFReactive force fields make low-cost simulations of chemical reactions possible. However, optimizing them for a given chemical system is difficult and time-consuming. We present a high-performance implementation of global force-field parameter optimization, which delivers parameter sets of the same quality with much less effort and in far less time than before, and also offers excellent parallel scaling.
View Article and Find Full Text PDF