Background: More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests.
View Article and Find Full Text PDFRetinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown.
View Article and Find Full Text PDFIt is widely accepted that more needs to be done to bring new, safe, and efficacious drugs to the market. Cardiovascular toxicity detected both in early drug discovery as well as in the clinic, is a major contributor to the high failure rate of new molecules. The growth of translational safety offers a promising approach to improve the probability of success for new molecules.
View Article and Find Full Text PDFThe contribution of the renin-angiotensin-aldosterone system (RAAS) to the development of congestive heart failure (CHF) and hypertension (HT) has long been recognized. Medications that are commonly used in the course of CHF and HT are most often given with morning food for the sake of convenience and therapeutic compliance. However, biological rhythms and their responsiveness to environmental clues such as food intake may noticeably impact the effectiveness of drugs used in the management of cardiovascular disorders.
View Article and Find Full Text PDFThe renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in the regulation of blood pressure and volume homeostasis. Its contribution to the development of cardiovascular diseases has long been recognized. Extensive literature has shown that peptides of the RAAS oscillate with a circadian periodicity in humans, under strong influence of posture, sleep, and age.
View Article and Find Full Text PDFMicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*).
View Article and Find Full Text PDF