Publications by authors named "Mark Daley"

Background: In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables.

Methods: We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes.

View Article and Find Full Text PDF

Sepsis is a major cause of morbidity and mortality worldwide. Among the various types of end-organ damage associated with sepsis, hepatic injury is linked to significantly higher mortality rates compared to dysfunction in other organ systems. This study aimed to investigate potential biomarkers of hepatic injury in sepsis patients through a multi-center, case-control approach.

View Article and Find Full Text PDF

Background: Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes (T1D), arising from relative insulin deficiency and leading to hyperglycemia, ketonemia, and metabolic acidosis. Early detection and treatment are essential to prevent severe outcomes. This pediatric case-control study utilized plasma metabolomics to explore metabolic alterations associated with DKA and to identify predictive metabolite patterns.

View Article and Find Full Text PDF

Proarrhythmic cardiotoxicity remains a substantial barrier to drug development as well as a major global health challenge. In vitro human pluripotent stem cell-based new approach methodologies have been increasingly proposed and employed as alternatives to existing in vitro and in vivo models that do not accurately recapitulate human cardiac electrophysiology or cardiotoxicity risk. In this study, we expanded the capacity of our previously established 3D human cardiac microtissue model to perform quantitative risk assessment by combining it with a physiologically based pharmacokinetic model, allowing a direct comparison of potentially harmful concentrations predicted in vitro to in vivo therapeutic levels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the proteome changes in critically ill COVID-19 patients to understand susceptibility, symptoms, and treatment markers by analyzing the plasma proteins of various patient groups using machine learning.
  • A case-control study compared 2000 plasma proteins among COVID-19 patients, non-COVID-19 sepsis controls, and healthy individuals, leading to the identification of a 28-protein model that effectively differentiates these groups.
  • Key findings include a subset of 9 proteins linked to important clinical factors, with no significant changes over time in the COVID-19 cohort, and a multi-system expression pattern, particularly in the digestive and nervous systems.
View Article and Find Full Text PDF

Background: The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition.

View Article and Find Full Text PDF

Background: Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores.

View Article and Find Full Text PDF

Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI).

View Article and Find Full Text PDF
Article Synopsis
  • Acute and chronic kidney diseases are serious conditions that lead to significant health challenges, yet there are limited reliable biomarkers for predicting kidney dysfunction.
  • This study analyzed blood and urine samples from healthy individuals, COVID-19 patients with acute kidney injury, and chronic kidney disease patients, using a new multiplex panel to assess 21 proteins.
  • The results revealed distinct biomarker profiles that can differentiate between healthy controls, patients with acute kidney injury, and those with end-stage kidney disease, highlighting correlations between these biomarkers and clinical data.
View Article and Find Full Text PDF

Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm).

View Article and Find Full Text PDF

Background: Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as "Long-COVID". A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID.

View Article and Find Full Text PDF

Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels.

View Article and Find Full Text PDF

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity.

View Article and Find Full Text PDF

Background: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients.

Methods: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.

View Article and Find Full Text PDF

Background: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients.

View Article and Find Full Text PDF

Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made.

View Article and Find Full Text PDF

Military Breachers and Range Staff (MBRS) are subjected to repeated sub-concussive blasts, and they often report symptoms that are consistent with a mild traumatic brain injury (mTBI). Biomarkers of blast injury would potentially aid blast injury diagnosis, surveillance and avoidance. Our objective was to identify plasma metabolite biomarkers in military personnel that were exposed to repeated low-level or sub-concussive blast overpressure.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19, caused by SARS-CoV-2, is a global emergency affecting critically ill patients, who exhibit varying humoral responses based on their COVID-19 status.
  • Blood samples showed that COVID-19 positive patients had higher body mass indexes, more frequent bilateral pneumonia, and a mortality rate of 50%.
  • Anti-SARS-CoV-2 serological responses on ICU days 1, 3, and later peak at different times, indicating that immune response timing may help in disease management and guiding therapies, despite not being linked to mortality.
View Article and Find Full Text PDF

Background: Early estimates of excess mortality are crucial for understanding the impact of COVID-19. However, there is a lag of several months in the reporting of vital statistics mortality data for many jurisdictions, including across Canada. In Ontario, a Canadian province, certification by a coroner is required before cremation can occur, creating real-time mortality data that encompasses the majority of deaths within the province.

View Article and Find Full Text PDF

Introduction: Severe traumatic brain injury (sTBI) is a leading cause of mortality in children. As clinical prognostication is important in guiding optimal care and decision making, our goal was to create a highly discriminative sTBI outcome prediction model for mortality.

Methods: Machine learning and advanced analytics were applied to the patient admission variables obtained from a comprehensive pediatric sTBI database.

View Article and Find Full Text PDF

Sport concussions can be difficult to diagnose and if missed, they can expose athletes to greater injury risk and long-lasting neurological disabilities. Discovery of objective biomarkers to aid concussion diagnosis is critical to protecting athlete brain health. To this end, we performed targeted proteomics on plasma obtained from adolescent athletes suffering a sports concussion.

View Article and Find Full Text PDF

Introduction: Although atrial fibrillation is the most prevalent disorder of electrical conduction, the mechanisms behind atrial arrhythmias remain elusive. To address this challenge, we developed a robust model of 3D atrial microtissue from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and evaluated chamber-specific chemical responses experimentally and computationally.

Methods: We differentiated atrial and ventricular cardiomyocytes (aCMs/vCMs) from GCaMP6f-expressing hiPSCs and assessed spontaneous AP activity using fluorescence imaging.

View Article and Find Full Text PDF

Objectives: Severe traumatic brain injury (sTBI) patients suffer high mortality. Accurate prognostic biomarkers have not been identified. In this exploratory study, we performed targeted proteomics on plasma obtained from sTBI patients to identify potential outcome biomarkers.

View Article and Find Full Text PDF

Background And Objective: Human walking is typically assessed using a sensor placed on the lower back or the hip. Such analyses often ignore that the arms, legs, and body trunk movements all have significant roles during walking; in other words, these body nodes with accelerometers form a body sensor network (BSN). BSN refers to a network of wearable sensors or devices on the human body that collects physiological signals.

View Article and Find Full Text PDF

COVID-19 is associated with a novel multi-system inflammatory syndrome that shares some characteristics with Kawasaki's Disease. The syndrome manifestation is delayed relative to COVID-19 onset, with a spectrum of clinical severity. Clinical signs may include persistent fever, gastrointestinal symptoms, cardiac inflammation and/or shock.

View Article and Find Full Text PDF