Tire and road wear particles (TRWP) are becoming an important research question with potential risks on ecological system. A comprehensive understanding of their detection and quantification in soils are challenged by the inherent technological inconsistencies, lack of well-set standardized methods, and generalized protocols. Reference tire cryogrinds were subjected to abiotic weathering.
View Article and Find Full Text PDFNorbornylized seed oils, i.e., norbornylized linseed oil (NLO), norbornylized soybean oil (NSO), and norbornylized high oleic soybean oil (NHOSO), were synthesized via the Diels-Alder reaction of seed oil and dicyclopentadiene (DCPD) at high temperature (∼235 °C) and high pressure (∼80 psi), followed by cationic copolymerization using DCPD with boron trifluoride diethyl etherate catalyst.
View Article and Find Full Text PDFA comprehensive understanding of tire and road wear particles (TRWPs) and their detection and quantification in soils is still challenged by the lack of well-set standardized methods, inherent technological inconsistencies, and generalized protocols. Our protocol includes soil sampling, size separation, and organic matter removal by using hydrogen peroxide followed by density separation and analysis. In this context, roadside soil samples from different sites in Kansas and Ohio, USA, were collected and analyzed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
A challenge of broad interest in both materials science and biology is the study of interfaces that are buried within a structure, particularly multilayer structures. Despite the enormous costs of corrosion and many decades of corrosion research, details of the mechanisms of various sorts of corrosion are still not clear, in part due to the difficulty in interrogating the interface between the corroding metal and an organic coating, which is typically used to mitigate corrosion. Generally, the performance of such coatings is evaluated by visual inspection after exposure or by modeling impedance data, which is a process not straightforwardly connected to physical interface structures.
View Article and Find Full Text PDFA facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions.
View Article and Find Full Text PDFBlock copolymer templating is a versatile approach for the generation of well-defined porosity in a wide variety of framework chemistries. Here, we systematically investigate how the composition of a poly(methoxy poly[ethylene glycol] methacrylate)-block-poly(butyl acrylate) (PMPEG-PBA) template impacts the pore characteristics of mesoporous cobalt oxide films. Three templates with a constant PMPEG segment length and different hydrophilic block volume fractions of 17%, 51%, and 68% for the PMPEG-PBA are cooperatively assembled with cobalt nitrate hexahydrate and citric acid.
View Article and Find Full Text PDF