Publications by authors named "Mark D Holtan"

One of the key factors limiting sensitivity in many electrochemical assays is the nonfaradaic or capacitive current. This is particularly true in modern assay systems based on DNA monolayers at gold electrode surfaces, which have shown great promise for bioanalysis in complex milieu such as whole blood or serum. While various changes in analytical parameters, redox reporter molecules, DNA structures, probe coverage, and electrode surface area have been shown useful, background reduction by hardware subtraction has not yet been explored for these assays.

View Article and Find Full Text PDF

Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV).

View Article and Find Full Text PDF

Employing 3D-printed templates for macro-to-micro interfacing, a passively operated polydimethysiloxane (PDMS) microfluidic device was designed for time-resolved secretion sampling from primary murine islets and epidiymal white adipose tissue explants. Interfacing in similar devices is typically accomplished through manually punched or drilled fluidic reservoirs. We previously introduced the concept of using hand fabricated polymer inserts to template cell culture and sampling reservoirs into PDMS devices, allowing rapid stimulation and sampling of endocrine tissue.

View Article and Find Full Text PDF

Homogenous protein assays, despite the potential for mix-and-read workflows, have eluded widespread acceptance due to interferences in biological matrices and limited multiplexability. Here, we employ standard qPCR instrumentation for thermofluorimetric analysis of bivalent probe (TFAB) assemblies, allowing protein levels to be quantitatively translated into multiplexable DNA melting transitions within 30 min. As protein-bound bivalent probes are thermodynamically more stable than unbound probes, differential thermal analysis can remove background analytically, without physical separation.

View Article and Find Full Text PDF