Z Kristallogr Cryst Mater
January 2015
-Dodecane/urea is a member of the prototype series of -alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases.
View Article and Find Full Text PDFPhys Rev B Condens Matter Mater Phys
May 2015
The intergrowth crystal of -tetracosane/urea presents a misfit parameter, defined by the ratio = / (/), that is very close to a commensurate value ( ≅ 1/3). High-resolution diffraction studies presented here reveal an aperiodic misfit parameter of = 0.3369, which is found to be constant at all temperatures studied.
View Article and Find Full Text PDFn-Heptane/urea is an aperiodic inclusion compound in which the ratio of host and guest repeats along the channel axis is very close to unity and is found to have a constant value (0.981) from 280 K to 90 K. Below 280 K, two phase transitions are observed.
View Article and Find Full Text PDFHigh-resolution studies of the host-guest inclusion compound n-hexadecane/urea are reported at atmospheric pressure, using both cold neutrons and x-ray diffraction. This intergrowth crystal presents a misfit parameter, defined by the ratio c(h)/c(g) (c(host)/c(guest)), which is temperature independent and irrational (γ = 0.486 ± 0.
View Article and Find Full Text PDFNumerous crystalline materials, including those of bioorganic origin, comprise incommensurate sublattices whose mutual arrangement is described in a superspace framework exceeding three dimensions. We report direct observation by neutron diffraction of superspace symmetry breaking in a solid-solid phase transition of an incommensurate host-guest system: the channel inclusion compound of nonadecane/urea. Strikingly, this phase transition generates a unit cell doubling that concerns only the modulation of one substructure by the other-an internal variable available only in superspace.
View Article and Find Full Text PDFModern crystal engineering has emerged as a rich discipline whose success requires an iterative process of synthesis, crystallography, crystal structure analysis, and computational methods. By focusing on the molecular recognition events during nucleation and growth, chemists have uncovered new ways of controlling the internal structure and symmetry of crystals and of producing materials with useful chemical and physical properties.
View Article and Find Full Text PDFUrea inclusion compounds (UICs) have been used as tools to understand ferroelastic domain switching and molecular recognition during crystal growth. Although the vast majority of UICs contain helical arrangements of host H-bonds, those containing guests with the formula X(CH(2))(6)Y (X, Y = Br, Cl, CN, NC) adopt an alternative P2(1)/n packing mode in which the host molecules exist as stacked loops of urea hexamers. Such structures may be further separated into two classes, ones distorted away from hexagonal symmetry along [100] (Br(CH(2))(6)Br, Br(CH(2))(6)Cl, and Cl(CH(2))(6)Cl) and those distorted along [001] (e.
View Article and Find Full Text PDF