Publications by authors named "Mark D Foster"

The underlying microscopic response of filler networks in reinforced rubber to dynamic strain is not well understood due to the experimental difficulty of directly measuring filler network behavior in samples undergoing dynamic strain. This difficulty can be overcome with in situ X-ray photon correlation spectroscopy (XPCS) measurements. The contrast between the silica filler and the rubber matrix for X-ray scattering allows us to isolate the filler network behavior from the overall response of the rubber.

View Article and Find Full Text PDF

Design of the crowding of chains tethered at the faces of β-sheet nanocrystals self-assembled from β-alanine trimers grafted on polyisobutylene (PIB) rubber tailors nanocrystal size and thus the elastic matrix morphology, thereby altering the material's macroscopic elastic properties. Results from transmission electron microscopy, small-angle X-ray scattering, and small-angle neutron scattering characterizations of the morphology demonstrate that increasing the density of chain tethering at the crystalline nanodomain/matrix interface can sharply limit the nanodomain growth in the direction of hydrogen bonding in the crystals. The nanocrystal size, in turn, impacts the gradient in chain stretching away from the crystal surface and the macroscopic volume fraction of unperturbed chains.

View Article and Find Full Text PDF

Filled rubber materials are key in many technologies having a broad impact on the economy and sustainability, the most obvious being tire technology. Adding filler dramatically improves the strength of rubber by reinforcement and tailoring the type of filler, and the chemistry of the interface between the filler and rubber matrix is important for optimizing performance metrics such as fuel efficiency. In a highly loaded, silica-filled, cross-linked model rubber closely mimicking commercial materials, both the filler network structure and the dynamics of the silica filler particles change when the silica surface is modified with silane coupling agents.

View Article and Find Full Text PDF

Use of a plasma-polymerized (pp) layer under a polyurethane (PU) coating on aluminum dramatically improves the corrosion resistance. Compared to conventional polymer coatings, pp coatings are highly cross-linked, have better adhesion to substrates, and result in lower emission of volatile organic contents. Although past research has focused on the properties of comparatively thick pp films and on the use of pp films alone to protect metals, we consider here very thin pp coatings as a primer layer to improve corrosion resistance.

View Article and Find Full Text PDF

A challenge of broad interest in both materials science and biology is the study of interfaces that are buried within a structure, particularly multilayer structures. Despite the enormous costs of corrosion and many decades of corrosion research, details of the mechanisms of various sorts of corrosion are still not clear, in part due to the difficulty in interrogating the interface between the corroding metal and an organic coating, which is typically used to mitigate corrosion. Generally, the performance of such coatings is evaluated by visual inspection after exposure or by modeling impedance data, which is a process not straightforwardly connected to physical interface structures.

View Article and Find Full Text PDF

Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging (SL-MALDI-MSI) is a powerful new surface sensitive imaging technique to establish surface component localization of multicomponent polymer materials. This study demonstrates the ability of SL-MALDI-MSI to image defects from foreign materials, material absence, mechanical scribing, and solvent perturbation at the surface of low-molecular-weight poly(methyl methacrylate) and polystyrene thin films. The surface specificity of the SL-MALDI-MSI technique is validated by imaging polystyrene on poly(methyl methacrylate) bilayer films; only polystyrene ions are detected from the surface of the unperturbed polystyrene layer.

View Article and Find Full Text PDF

The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems.

View Article and Find Full Text PDF

The surface of a blend of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxymethyl ends not only is depleted of the higher energy end groups but also is depleted of any segments belonging to the functionalized chains. This is demonstrated using the emerging technique of surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which detects entire chains that have any repeat unit at the outer surface, and requires no labeling. Detecting entire chains provides information about the relationship of chain functionalization to surface segregation behavior of entire chains.

View Article and Find Full Text PDF

The unusually large film thickness at which confinement effects manifest themselves in surface fluctuations of unentangled four-arm star polymers has been defined using film thicknesses from 10 to 107. For 15k four-arm star polystyrene (SPS), confinement appears at a thickness between 112 nm (40) and 72 nm (26), which is remarkably larger than the thicknesses at which confinement appears for unentangled 6k linear (<15 nm, <7) and 6k and 14k cyclic (24 and 22 nm, respectively) polystyrenes. Data for 15k star films can be rationalized using a two-layer model with a 17 nm (6) thick highly viscous layer at the substrate, which is significantly thicker than the 1 thick "irreversibly adsorbed" layer.

View Article and Find Full Text PDF

The preference for a shorter chain component at a polymer blend surface impacts surface properties key to application-specific performance. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. Observations with surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which distinguishes surface species without labeling and provides the entire molecular weight distribution, demonstrate that entropically driven surface enrichment of shorter chains occurs even in low polydispersity materials.

View Article and Find Full Text PDF

Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4 thick melt films of 131 kg/mol linear PS on hydrogen-passivated silicon (H-Si) and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity.

View Article and Find Full Text PDF

Tip enhanced Raman spectroscopy (TERS) has been established as a powerful, noninvasive technique for chemical identification at the nanoscale. However, difficulties, including the degradation of probes, limit its use in liquid systems. Here TERS probes for studies in aqueous environments have been demonstrated using titanium nitride coatings with an alumina protective layer.

View Article and Find Full Text PDF

If you mix lines and circles, what happens at the edge of the mixture? The problem is simply stated, but the answer is not obvious. Twenty years ago it was proposed that a universal topological driving force would drive cyclic chains to enrich the surface of blends of linear and cyclic chains. Here such behavior is demonstrated experimentally for sufficiently long chains and the limit in molecular weight where packing effects dominate over the topological driving force is identified.

View Article and Find Full Text PDF

The surface fluctuations of a melt film of a low molecular weight cyclic polystyrene (CPS) manifest confinement effects for a film thickness (14) much larger than that for which a melt film of the linear chain analog manifests confinement. This is true both in terms of absolute thickness and thickness relative to chain size, . In fact, the linear analog polymer does not manifest confinement effects even at a thickness of 7.

View Article and Find Full Text PDF

The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush.

View Article and Find Full Text PDF

The scaling of the thickness, hs, of a densely grafted polymer brush of chain length N and grafting density σ swollen in vapor agrees quantitatively with the scaling reported by Kuhl et al. for densely grafted brushes swollen in liquid. Deep in the brush, next to the substrate, the shape of the segment concentration profile is the same whether the brush is swollen by liquid or by vapor.

View Article and Find Full Text PDF

The contributions of chain ends and branch points to surface segregation of long-branched chains in blends with linear chains have been studied using neutron reflectometry and surface-enhanced Raman spectroscopy for a series of novel, well-defined polystyrenes. A linear response theory accounting for the number and type of branch points and chain ends is consistent with surface excesses and composition profile decay lengths, and allows the first determination of branch point potentials. Surface excess is determined primarily by chain ends with branch points playing a secondary role.

View Article and Find Full Text PDF

The dynamics of thermally stimulated surface fluctuations of 100 nm thick films of long-branched polymers are measured for the first time. In contrast to comparable films of linear or cyclic chains that show no change in viscosity upon confinement, films of 6-pom, 6-star, and 6-end end-branched stars show viscosities, inferred from x-ray photon correlation spectroscopy, as much as 100 times higher than in the bulk. This difference varies in magnitude with chain architecture.

View Article and Find Full Text PDF

We demonstrate, using neutron reflectivity, that the width of a nonequilibrium interface between an organo-soluble aromatic polyimide film and triacetate cellulose (TAC) support film created by spin-coating or solution-casting can be broadened in a controllable way using a "swelling agent" in the deposition process. In a favorable case, the adhesion, as measured by T-peel tests, can be increased by a factor of 7 by adjustment of the solvent composition. The morphologies of the TAC fractured surfaces after peeling tests measured by AFM reveal that broadening of the interfacial width causes an interconnected network in the interface, leading to a sharp increase in the interfacial adhesion.

View Article and Find Full Text PDF

[M + Ag](+) ions from cyclic and linear polystyrenes and polybutadienes, formed by matrix-assisted laser desorption ionization (MALDI), give rise to significantly different fragmentation patterns in tandem mass spectrometry (MS(2)) experiments. In both cases, fragmentation starts with homolytic cleavage at the weakest bond, usually a C-C bond, to generate two radicals. From linear structures, the separated radicals depolymerize extensively by monomer losses and backbiting rearrangements, leading to low-mass radical ions and much less abundant medium- and high-mass closed-shell fragments that contain one of the original end groups, along with internal fragments.

View Article and Find Full Text PDF

Surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-TOF MS) is a powerful new surface sensitive technique to quantify the surface concentration of multicomponent polymer films with enrichment of one component at the surface. Its capabilities are demonstrated for the novel case of a blend of cyclic polystyrene with linear polystyrene, in which we find the composition of linear chains enriched at the surface after annealing, contrary to the expectation of a self-consistent field theory. The probing depth was confirmed to be monomolecular, which for these short chains is less than 2 nm, even though material at a much greater depth is removed by the analysis.

View Article and Find Full Text PDF

Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W.

View Article and Find Full Text PDF

The surfactants sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) displace human serum albumin (HSA) from loosely packed self-assembled monolayers (SAM) of hydrophobic alkyl chains by different means. Removal of HSA is of interest because previous work has suggested that the adsorption of HSA to such loosely packed SAMs may be sufficiently tenacious to offer opportunities for surface passivation. While HSA remains on the surface after exposure to SDS and rinsing, no protein remains after exposure to CTAB and rinsing.

View Article and Find Full Text PDF

The measurement of lateral force in response to small amplitude lateral oscillations of a sample using a scanning probe microscope (X-modulation) is presented as an effective means of identifying key qualitative differences in the nanomechanical behavior of solid surfaces. To study the surface behavior in detail, it is critical that the instrument have sufficient flexibility. Computer-assisted measurement automation achieved using LabVIEW makes an X-modulation experiment more flexible and convenient.

View Article and Find Full Text PDF