Although the intracellular molecular clocks that regulate circadian (~24 h) behavioral rhythms are well understood, it remains unclear how molecular clock information is transduced into rhythmic neuronal activity that in turn drives behavioral rhythms. To identify potential clock outputs, the authors generated expression profiles from a homogeneous population of purified pacemaker neurons (LN(v)s) from wild-type and clock mutant Drosophila. They identified a group of genes with enriched expression in LN(v)s and a second group of genes rhythmically expressed in LN(v)s in a clock-dependent manner.
View Article and Find Full Text PDFThe genomic architecture underlying the evolution of insect social behavior is largely a mystery. Eusociality, defined by overlapping generations, parental brood care, and reproductive division of labor, has most commonly evolved in the Hymenopteran insects, including the honey bee Apis mellifera. In this species, the Major Royal Jelly Protein (MRJP) family is required for all major aspects of eusocial behavior.
View Article and Find Full Text PDFDrosophila melanogaster males perform a courtship ritual consisting of a series of dependent fixed-action patterns. The yellow (y) gene is required for normal male courtship behavior and subsequent mating success. To better characterize the requirement for y in the manifestation of innate male sexual behavior, we measured the male mating success (MMS) of 12 hypomorphic y mutants and matched-outbred-background controls using a y+ rescue element on a freely segregating minichromosome.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2003
In Drosophila melanogaster, the protein product of the yellow gene is necessary for normal pigmentation and male sexual behavior. Although one of the best characterized loci from a genetic standpoint, the function of the Yellow protein in the development of either phenotype is unknown. Here I propose that Yellow acts as a growth factor- or hormone-like molecule in the development of pigmentation and sexual behavior, and discuss the consistency of this theory with experimental observations in flies and humans.
View Article and Find Full Text PDFIn this paper we develop predictions from models of life-long demographic heterogeneity. These predictions are then compared to observations of mortality in large laboratory populations of Drosophila melanogaster. We find that the demographic heterogeneity models either require levels of variation that far exceed what would be considered biologically plausible, or they predict a much larger number of very old individuals than we actually observe.
View Article and Find Full Text PDFThe fruitless (fru) gene is a member of the Drosophila melanogaster somatic sex determination genetic pathway. Although it has been hypothesized that the primary function of fru is to regulate a genetic hierarchy specifying development of adult male courtship behavior, genes acting downstream of fru have not yet been identified. Here we demonstrate that the yellow (y) gene is genetically downstream of fru in the 3(rd)-instar larval brain.
View Article and Find Full Text PDFAging appears to cease at late ages, when mortality rates roughly plateau in large-scale demographic studies. This anomalous plateau in late-life mortality has been explained theoretically in two ways: (1) as a strictly demographic result of heterogeneity in life-long robustness between individuals within cohorts, and (2) as an evolutionary result of the plateau in the force of natural selection after the end of reproduction. Here we test the latter theory using cohorts of Drosophila melanogaster cultured with different ages of reproduction for many generations.
View Article and Find Full Text PDFThe Drosophila melanogaster fruitless gene encodes multiple male-specific transcription factors that are hypothesized to regulate a hierarchy of genes responsible for the development of male courtship behavior. Here we show that there are dramatically increased levels of the protein product of the male courtship behavior gene yellow associated with male-specific Fruitless protein in a subset of neuroblasts in third-instar larval male brains. We hypothesize that yellow is downstream of fruitless in a male courtship behavior developmental genetic pathway.
View Article and Find Full Text PDF