Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>10) dynamic range of AA reactivity with OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low OH reactivities.
View Article and Find Full Text PDFIntroduction: Mesenchymal stromal cells (MSCs) can modulate immune responses and suppress inflammation in autoimmune diseases. Although their safety has been established in clinical trials, the efficacy of MSCs is inconsistent due to variability in potency among different preparations and limited specificity in targeting mechanisms driving autoimmune diseases.
Methods: We utilized High-Dimensional Design of Experiments methodology to identify factor combinations that modulate gene expression by MSCs to mitigate inflammation.
This study aims to characterize dysregulation of phosphorylation for the 5XFAD mouse model of Alzheimer disease (AD). Employing global phosphoproteome measurements, we analyze temporal (3, 6, and 9 months) and sex-dependent effects on mouse hippocampus tissue to unveil molecular signatures associated with AD initiation and progression. Our findings reveal consistent phosphorylation of known AD biomarkers APOE and GFAP in 5XFAD mice, alongside candidates BIG3, CLCN6, and STX7, suggesting their potential as biomarkers for AD pathology.
View Article and Find Full Text PDFSummary: We present RokaiXplorer, an intuitive web tool designed to address the scarcity of user-friendly solutions for proteomics and phospho-proteomics data analysis and visualization. RokaiXplorer streamlines data processing, analysis, and visualization through an interactive online interface, making it accessible to researchers without specialized training in proteomics or data science. With its comprehensive suite of modules, RokaiXplorer facilitates phospho-proteomic analysis at the level of phosphosites, proteins, kinases, biological processes, and pathways.
View Article and Find Full Text PDFThe BRG-/BRM-associated factor (BAF) chromatin remodeling complex is a central actor in transcription. One mechanism by which BAF affects gene expression is via its various histone mark readers, including double plant homeodomains (DPF), located in the BAF45D subunit. DPF domains recognize lysine acetyl and acylations, including crotonylation, localized at promoters and enhancers.
View Article and Find Full Text PDFLactate levels in humans reveal intensity and duration of exertion and provide a critical readout for the severity of life-threatening illnesses such as pediatric sepsis. Using the lactate oxidase enzyme (Lox) from , we demonstrated its functionality for lactate electrochemical sensing in physiological fluids in a lab setting. The structure and dynamics of LOx were validated by crystallography, X-ray scattering, and hydroxyl radical protein footprinting.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Methionine oxidation to the sulfoxide form (MS) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MS site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MS across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states.
View Article and Find Full Text PDFHydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline.
View Article and Find Full Text PDFThe history of military medicine and research is rife with examples of novel treatments and new approaches to heal and cure soldiers and others impacted by war's devastation. In the 21st century, new threats, like climate change, are combined with traditional threats, like geopolitical conflict, to create novel challenges for our strategic interests. Extreme and inaccessible environments provide heightened risks for warfighter exposure to dangerous bacteria, viruses, and fungi, as well as exposure to toxic substances and extremes of temperature, pressure, or both providing threats to performance and eroding resilience.
View Article and Find Full Text PDFThis study aims to characterize dysregulation of phosphorylation for the 5XFAD mouse model of Alzheimer's disease (AD). Employing global phosphoproteome measurements, we analyze temporal (3, 6, 9 months) and sex-dependent effects on mouse hippocampus tissue to unveil molecular signatures associated with AD initiation and progression. Our results indicate 1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2023
Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results.
View Article and Find Full Text PDF15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors.
View Article and Find Full Text PDFProtein phosphorylation is a key post-translational modification that plays a central role in many cellular processes. With recent advances in biotechnology, thousands of phosphorylated sites can be identified and quantified in a given sample, enabling proteome-wide screening of cellular signaling. However, for most (> 90%) of the phosphorylation sites that are identified in these experiments, the kinase(s) that target these sites are unknown.
View Article and Find Full Text PDFMouse models of Alzheimer's disease (AD) show progression through stages reflective of human pathology. Proteomics identification of temporal and sex-linked factors driving AD-related pathways can be used to dissect initiating and propagating events of AD stages to develop biomarkers or design interventions. In the present study, we conducted label-free proteome measurements of mouse hippocampus tissue with variables of time (3, 6, and 9 months), genetic background (5XFAD versus WT), and sex (equal males and females).
View Article and Find Full Text PDFProtein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment.
View Article and Find Full Text PDFMotivation: Protein phosphorylation is a ubiquitous regulatory mechanism that plays a central role in cellular signaling. According to recent estimates, up to 70% of human proteins can be phosphorylated. Therefore, the characterization of phosphorylation dynamics is critical for understanding a broad range of biological and biochemical processes.
View Article and Find Full Text PDFBackground: An important part of biomedical research is the translation of discoveries into clinical or community applications that impact patient health. For a vast majority of clinical applications and sustainable community interventions, a time-tested way to get innovations to patients is through licensing of the technology and commercial development, often through startups. While biomedical scientists and trainees are schooled in discovery research, the processes of commercialization are foreign or intimidating.
View Article and Find Full Text PDFAcademic discovery in biomedicine is a growing enterprise with tens of billions of dollars in research funding available to universities and hospitals. Protecting and optimizing the resultant intellectual property is required in order for the discoveries to have an impact on society. To achieve that, institutions must create a multidisciplinary, collaborative system of review and support, and utilize connections to industry partners.
View Article and Find Full Text PDFAdaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and -induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity.
View Article and Find Full Text PDFSynchrotron X-ray footprinting (XF) is a growing structural biology technique that leverages radiation-induced chemical modifications via X-ray radiolysis of water to produce hydroxyl radicals that probe changes in macromolecular structure and dynamics in solution states of interest. The X-ray Footprinting of Biological Materials (XFP) beamline at the National Synchrotron Light Source II provides the structural biology community with access to instrumentation and expert support in the XF method, and is also a platform for development of new technological capabilities in this field. The design and implementation of a new high-throughput endstation device based around use of a 96-well PCR plate form factor and supporting diagnostic instrumentation for synchrotron XF is described.
View Article and Find Full Text PDFThere is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques-mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner.
View Article and Find Full Text PDFMass spectrometry enables high-throughput screening of phosphoproteins across a broad range of biological contexts. When complemented by computational algorithms, phospho-proteomic data allows the inference of kinase activity, facilitating the identification of dysregulated kinases in various diseases including cancer, Alzheimer's disease and Parkinson's disease. To enhance the reliability of kinase activity inference, we present a network-based framework, RoKAI, that integrates various sources of functional information to capture coordinated changes in signaling.
View Article and Find Full Text PDFMotivation: Protein phosphorylation is a ubiquitous mechanism of post-translational modification that plays a central role in cellular signaling. Phosphorylation is particularly important in the context of cancer, as downregulation of tumor suppressors and upregulation of oncogenes by the dysregulation of associated kinase and phosphatase networks are shown to have key roles in tumor growth and progression. Despite recent advances that enable large-scale monitoring of protein phosphorylation, these data are not fully incorporated into such computational tasks as phenotyping and subtyping of cancers.
View Article and Find Full Text PDFBackground: Improving the care of patients with glioblastoma (GB) requires accurate and reliable predictors of patient prognosis. Unfortunately, while protein markers are an effective readout of cellular function, proteomics has been underutilized in GB prognostic marker discovery.
Methods: For this study, GB patients were prospectively recruited and proteomics discovery using liquid chromatography-mass spectrometry analysis (LC-MS/MS) was performed for 27 patients including 13 short-term survivors (STS) (≤10 months) and 14 long-term survivors (LTS) (≥18 months).