Background: CVN424 is a GPR6 inverse agonist that provides selective pharmacological control of the indirect striatopallidal pathway. We assessed the safety and efficacy of CVN424 as an adjunctive treatment to levodopa for reducing OFF-time in individuals with Parkinson's disease (PD) experiencing motor-fluctuations.
Methods: This was a randomised, double-blind, placebo-controlled study conducted at 21 sites across the United States to evaluate two doses of CVN424 (NCT04191577).
The potassium (K) ion channel KCNK13 is specifically expressed in human microglia with elevated expression observed in post-mortem human brain tissue from patients with Alzheimer's disease. Modulation of KCNK13 activity by a small-molecule inhibitor is proposed as a potential treatment for neurodegenerative diseases. Herein, we describe the evolution of a series of KCNK13 inhibitors derived from a high-throughput screening campaign, resulting in , a potent, selective, and brain permeable clinical candidate molecule.
View Article and Find Full Text PDFModulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy.
View Article and Find Full Text PDFFrom our NETSseq-derived human brain transcriptomics data, we identified GPR55 as a potential molecular target for the treatment of motor symptoms in patients with Parkinson's disease. From a high-throughput screen, we identified and optimized agonists with nanomolar potency against both human and rat GPR55. We discovered compounds with either strong or limited β-arrestin signaling and receptor desensitization, indicating biased signaling.
View Article and Find Full Text PDFNicotinic acetylcholine receptor (nAChR) α6 subunit RNA expression is relatively restricted to midbrain regions and is located presynaptically on dopaminergic neurons projecting to the striatum. This subunit modulates dopamine neurotransmission and may have therapeutic potential in movement disorders. We aimed to develop potent and selective α6-containing nAChR antagonists to explore modulation of dopamine release and regulation of motor function in vivo.
View Article and Find Full Text PDFN-methyl-D-aspartate (NMDA) receptor hypofunctionality is a well-studied hypothesis for schizophrenia pathophysiology, and daily dosing of the NMDA receptor co-agonist, D-serine, in clinical trials has shown positive effects in patients. Therefore, inhibition of D-amino acid oxidase (DAAO) has the potential to be a new therapeutic approach for the treatment of schizophrenia. TAK-831 (luvadaxistat), a novel, highly potent inhibitor of DAAO, significantly increases D-serine levels in the rodent brain, plasma, and cerebrospinal fluid.
View Article and Find Full Text PDFSporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e.
View Article and Find Full Text PDFThe low affinity metabotropic glutamate receptor mGluR has been implicated in numerous CNS disorders; however, a paucity of potent and selective activators has hampered full delineation of the functional role and therapeutic potential of this receptor. In this work, we present the identification, optimization, and characterization of highly potent, novel mGluR agonists. Of particular interest is the chromane , a potent (EC 7 nM) allosteric agonist which demonstrates exquisite selectivity for mGluR compared to not only other mGluRs, but also a broad range of targets.
View Article and Find Full Text PDFFood intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRN) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRN neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake.
View Article and Find Full Text PDFWe report a significant decrease in transcription of the G protein-coupled receptor GPR39 in striatal neurons of Parkinson's disease patients compared to healthy controls, suggesting that a positive modulator of GPR39 may beneficially impact neuroprotection. To test this notion, we developed various structurally diverse tool molecules. While we elaborated on previously reported starting points, we also performed an in silico screen which led to completely novel pharmacophores.
View Article and Find Full Text PDFCVN424 is a novel small molecule and first-in-class candidate therapeutic to selectively modulate GPR6, an orphan G-protein coupled receptor. Expression of GPR6 is largely confined to the subset of striatal projection neurons that give rise to the indirect (striatopallidal) pathway, important in the control of movement. CVN424 improves motor function in preclinical animal models of Parkinson's disease.
View Article and Find Full Text PDFNeuropsychopharmacology
February 2022
Serotonin type-3 receptor (5-HTR) antagonists show potential as a treatment for cognitive deficits in schizophrenia. CVN058, a brain-penetrant, potent and selective 5-HTR antagonist, shows efficacy in rodent models of cognition and was well-tolerated in Phase-1 studies. We evaluated the target engagement of CVN058 using mismatch negativity (MMN) in a randomized, double-blind, placebo-controlled, cross-over study.
View Article and Find Full Text PDFJ Med Chem
July 2021
Parkinson's disease (PD) is a chronic and progressive movement disorder with the urgent unmet need for efficient symptomatic therapies with fewer side effects. GPR6 is an orphan G-protein coupled receptor (GPCR) with highly restricted expression in dopamine receptor D2-type medium spiny neurons (MSNs) of the indirect pathway, a striatal brain circuit which shows aberrant hyperactivity in PD patients. Potent and selective GPR6 inverse agonists (IAG) were developed starting from a low-potency screening hit (EC = 43 μM).
View Article and Find Full Text PDFGPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation.
View Article and Find Full Text PDFAmphisomes are organelles of the autophagy pathway that result from the fusion of autophagosomes with late endosomes. While biogenesis of autophagosomes and late endosomes occurs continuously at axon terminals, non-degradative roles of autophagy at boutons are barely described. Here, we show that in neurons BDNF/TrkB traffick in amphisomes that signal locally at presynaptic boutons during retrograde transport to the soma.
View Article and Find Full Text PDFThe discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy.
View Article and Find Full Text PDFIrregular N-methyl-D-aspartate receptor (NMDAR) function is one of the main hypotheses employed to facilitate understanding of the underlying disease state of schizophrenia. Although direct agonism of the NMDAR has not yielded promising therapeutics, advances have been made by modulating the NMDAR co-agonist site which is activated by glycine and D-serine. One approach to activate the co-agonist site is to increase synaptic D-serine levels through inhibition of D-amino acid oxidase (DAO), the major catabolic clearance pathway for this and other D-amino acids.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2014
The gut endocrine system is emerging as a central player in the control of appetite and glucose homeostasis, and as a rich source of peptides with therapeutic potential in the field of diabetes and obesity. In this study we have explored the physiology of insulin-like peptide 5 (Insl5), which we identified as a product of colonic enteroendocrine L-cells, better known for their secretion of glucagon-like peptide-1 and peptideYY. i.
View Article and Find Full Text PDFBackground: Adhesion G protein-coupled receptors (aGPCR) constitute a structurally and functionally diverse class of seven-transmembrane receptor proteins. Although for some of the members important roles in immunology, neurology, as well as developmental biology have been suggested, most receptors have been poorly characterized.
Results: We have studied evolution, expression, and function of an entire receptor group containing four uncharacterized aGPCR: Gpr110, Gpr111, Gpr115, and Gpr116.
Adhesion-GPCRs provide essential cell-cell and cell-matrix interactions in development, and have been implicated in inherited human diseases like Usher Syndrome and bilateral frontoparietal polymicrogyria. They are the second largest subfamily of seven-transmembrane spanning proteins in vertebrates, but the function of most of these receptors is still not understood. The orphan Adhesion-GPCR GPR126 has recently been shown to play an essential role in the myelination of peripheral nerves in zebrafish.
View Article and Find Full Text PDFJ Minim Invasive Gynecol
February 2009
Study Objective: To evaluate whether the addition of hysterectomy to laparoscopic pelvic floor repair has any impact on the short-term (perioperative) or long-term (prolapse outcome) effects of the surgery.
Design: A controlled prospective trial (Canadian Task Force classification II-1).
Setting: Private and public hospitals affiliated with a single institution.