Publications by authors named "Mark C Willingham"

Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy without effective therapeutic options to improve survival. Steroid receptor coactivator-3 (SRC-3) is a transcriptional coactivator whose amplification and/or overexpression has been identified in many cancers. In this study, we explored the expression of SRC-3 in ATCs and the effects of a new class of SRC-3 inhibitor-2 (SI-2) in human ATC cells (THJ-11T and THJ-16T cells) and mouse xenograft models to assess therapeutic potential of SI-2 for the treatment of ATC.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is an aggressive malignancy with limited options for treatment. Targeting epigenetic modifications via interfering with the interaction between the bromodomain and extra-terminal domain (BET) proteins and acetylated histones by using BET inhibitors (e.g.

View Article and Find Full Text PDF

Compelling epidemiological evidence shows a strong positive correlation of obesity with thyroid cancer. studies have provided molecular evidence that high-fat-diet-induced obesity promotes thyroid cancer progression by aberrantly activating leptin-JAK2-STAT3 signaling in a mouse model of thyroid cancer ( mice). The mouse expresses a dominantly negative thyroid hormone receptor β (denoted as PV) and a deletion of one single allele of the gene.

View Article and Find Full Text PDF

Compelling epidemiologic evidence indicates that obesity is a risk factor for human cancers, including breast. However, molecular mechanisms by which obesity could contribute to the development of breast cancer remain unclear. To understand the impact of obesity on breast cancer development, we used a mutant mouse that expresses a mutated thyroid hormone receptor β (denoted as PV) with haplodeficiency of the gene ( mice).

View Article and Find Full Text PDF

Context: Recent studies showed that transcription of the MYC gene is driven by the interaction of bromodomain and extraterminal domain (BET) proteins with acetylated histones on chromatin. JQ1, a potent inhibitor that effectively disrupts the interaction of BET proteins with acetylated histones, preferentially suppresses transcription of the MYC gene. We recently reported that JQ1 decreased thyroid tumor growth and improved survival in a mouse model of anaplastic thyroid cancer (ATC) by targeting MYC transcription.

View Article and Find Full Text PDF

Purpose: New therapeutic approaches are needed for patients with thyroid cancer refractory to radioiodine treatment. An inhibitor of bromodomain and extraterminal domain (BET) proteins, JQ1, shows potent antitumor effects in hematological cancers and solid tumors. To evaluate whether JQ1 is effective against thyroid cancer, we examined antitumor efficacy of JQ1 using the ThrbKras mouse, a model of anaplastic thyroid cancer.

View Article and Find Full Text PDF

Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer.

View Article and Find Full Text PDF

We have recently identified that phosphorylation at tyrosine (Y)406 is critical for the tumor suppressor functions of the thyroid hormone receptor β1 (TRβ) in a breast cancer line. However, still unclear is whether the critical tumor suppressor role of phosphorylated Y406 of TRβ is limited to only breast cancer cells or could be extended to other cell types. In the present studies, we addressed this question by stably expressing TRβ, a mutated TRβ oncogene (PV), or a TRβ mutated at Y406 (TRβY406F) in rat PCCL3 thyroid follicular cells and evaluated their tumor characteristics in athymic mice with elevated thyroid stimulating hormone.

View Article and Find Full Text PDF

Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (Thrb(PV/PV)Pten(+/-) mice).

View Article and Find Full Text PDF

Chemotherapy remains of limited use for the treatment of prostate cancer with only one drug, docetaxel, demonstrating a modest survival advantage for treatment of late-stage disease. Data from the NCI 60 cell line screen indicated that the castration-resistant prostate cancer cell lines PC3 and DU145 were more sensitive than average to the novel polymeric fluoropyrimidine (FP), F10, despite displaying less than average sensitivity to the widely-used FP, 5FU. Here, we show that F10 treatment of PC3 xenografts results in a significant survival advantage (treatment to control ratio (T/C) days = 18; p < 0.

View Article and Find Full Text PDF

Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression.

View Article and Find Full Text PDF

Our recent work has indicated that the DMP1 locus on 7q21, encoding a haplo-insufficient tumour suppressor, is hemizygously deleted at a high frequency in breast cancer. The locus encodes DMP1α protein, an activator of the p53 pathway leading to cell cycle arrest and senescence, and two other functionally undefined isoforms, DMP1β and DMP1γ. In this study, we show that the DMP1 locus is alternatively spliced in ∼30% of breast cancer cases with relatively decreased DMP1α and increased DMP1β expression.

View Article and Find Full Text PDF

Undifferentiated thyroid carcinoma is one of the most aggressive human cancers with frequent RAS mutations. How mutations of the RAS gene contribute to undifferentiated thyroid cancer remains largely unknown. Mice harboring a potent dominant negative mutant thyroid hormone receptor β, TRβPV (Thrb(PV/PV)), spontaneously develop well-differentiated follicular thyroid cancer similar to human cancer.

View Article and Find Full Text PDF

Mutations of the thyroid hormone receptor α gene (THRA) cause hypothyroidism in patients with growth and developmental retardation, and skeletal dysplasia. Genetic evidence indicates that the dominant negative activity of TRα1 mutants underlies pathological manifestations. Using a mouse model of hypothyroidism caused by a dominant negative TRα1PV mutant and its derived mouse model harboring a mutated nuclear receptor corepressor (NCOR1ΔID) (Thra1(PV/+)Ncor1(ΔID/ΔID) mice), we recently showed that aberrant release of TRα1 mutants from the NCOR1 repressor complex mediates dominant negative actions of TRα1 mutants in vivo.

View Article and Find Full Text PDF

Studies have suggested that the nuclear receptor corepressor 1 (NCOR1) could play an important role in human cancers. However, the detailed molecular mechanisms by which it functions in vivo to affect cancer progression are not clear. The present study elucidated the in vivo actions of NCOR1 in carcinogenesis using a mouse model (Thrb(PV/PV) mice) that spontaneously develops thyroid cancer.

View Article and Find Full Text PDF

Recent epidemiological studies provide strong evidence suggesting obesity is a risk factor in several cancers, including thyroid cancer. However, the molecular mechanisms by which obesity increases the risk of thyroid cancer are poorly understood. In this study, we evaluated the effect of diet-induced obesity on thyroid carcinogenesis in a mouse model that spontaneously develops thyroid cancer (Thrb(PV/PV)Pten(+/-) mice).

View Article and Find Full Text PDF

Background: Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood.

View Article and Find Full Text PDF

Background: Gene expression signatures indicative of tumor proliferative capacity and tumor-immune cell interactions have emerged as principal biology-driven predictors of breast cancer outcomes. How these signatures relate to one another in biological and prognostic contexts remains to be clarified.

Results: To investigate the relationship between proliferation and immune gene signatures, we analyzed an integrated dataset of 1,954 clinically annotated breast tumor expression profiles randomized into training and test sets to allow two-way discovery and validation of gene-survival associations.

View Article and Find Full Text PDF

Genetic evidence from patients with mutations of the thyroid hormone receptor α gene (THRA) indicates that the dominant negative activity of mutants underlies the pathological manifestations. However, the molecular mechanisms by which TRα1 mutants exert dominant negative activity in vivo are not clear. We tested the hypothesis that the severe hypothyroidism in patients with THRA mutations is due to an inability of TRα1 mutants to properly release the nuclear corepressors (NCORs), thereby inhibiting thyroid hormone-mediated transcription activity.

View Article and Find Full Text PDF

Background: Angiotensin-(1-7) [Ang-(1-7)] is an endogenous, heptapeptide hormone with anti-proliferative and anti-angiogenic properties. The primary objective of this study was to determine whether Ang-(1-7) effectively reduces prostate cancer metastasis in mice.

Methods: Human PC3 prostate cancer cells were injected into the aortic arch via the carotid artery of SCID mice pre-treated with Ang-(1-7) or injected into the tibia of athymic mice, administered Ang-(1-7) for 5 weeks beginning 2 weeks post-injection.

View Article and Find Full Text PDF

Purpose: Src is overexpressed or hyperactivated in a variety of human cancers, including thyroid carcinoma. Src is a central mediator in multiple signaling pathways that are important in oncogenesis and cancer progression. In this study, we evaluated the effects of an Src inhibitor, SKI-606 (bosutinib), in a spontaneous metastatic thyroid cancer model with constitutively activated Src (Thrb(PV/PV)Pten(+/-) mice).

View Article and Find Full Text PDF

Mutations in the ligand-binding domain of the thyroid hormone receptor β (TRβ) lead to resistance to thyroid hormone (RTH). These TRβ mutants function in a dominant-negative fashion to interfere with the transcription activity of wild-type thyroid hormone receptors (TRs), leading to dysregulation of the pituitary-thyroid axis and resistance in peripheral tissues. The molecular mechanism by which TRβ mutants cause RTH has been postulated to be an inability of the mutants to properly release the nuclear corepressors (NCORs), thereby inhibiting thyroid hormone (TH)-mediated transcription activity.

View Article and Find Full Text PDF

Background: In this study, we pilot tested an in vitro assay of cancer killing activity (CKA) in circulating leukocytes of 22 cancer cases and 25 healthy controls.

Methods: Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls.

View Article and Find Full Text PDF

Long chain n-3 PUFA have been shown to have chemopreventive properties against breast cancer through various mechanisms. One pathway, studied in human breast cancer cell lines, involves upregulation of the proteoglycan, syndecan-1 (SDC-1) by n-3 PUFA-enriched LDL. Using Fat-1 mice that are able to convert n-6 to n-3 PUFA, we tested whether SDC-1 level in vivo is elevated in mammary glands due to endogenously synthesized rather than LDL-derived n-3 PUFA.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells.

View Article and Find Full Text PDF