Publications by authors named "Mark C Pitter"

We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle.

View Article and Find Full Text PDF

Shifts of the plasmon scattering band of ultrathin gold films under the effect of dynamic applied potential were studied in single wavelength measurements. The effect on scattering of applied potential was ascribed to electronic charging and discharging of the gold film. Scattering transients in response to square-wave potential modulation had an exponential form which depended on the potential step width, the modulation frequency and the nature of the ions.

View Article and Find Full Text PDF

Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory.

View Article and Find Full Text PDF

Gold nanostructures of various morphologies, including nanospheres, nanorods, nanoprisms, and thin films, were immobilized on ITO-coated coverslips in order to investigate the response of their scattering to potential. Shifts in the plasmon band obtained by potential-modulated spectroscopic imaging indicated that the voltage sensitivity of the gold nanostructure is dependent on its morphology, with nanospheres exhibiting the lowest sensitivity and ultrathin gold films exhibiting the highest. The effects of potential on gold nanoparticles are in qualitative agreement with Mie and Gans' theories in which the shift of the gold plasma frequency is due to the charging-discharging of the nanoparticles.

View Article and Find Full Text PDF

The use of aplanatic solid immersion lenses (ASILs) made of high-refractive-index optical materials provides a route to wide-field high-resolution optical microscopy. Structured illumination microscopy (SIM) can double the spatial bandwidth of a microscope to also achieve high-resolution imaging. We investigate the combination of ASILs and SIM in fluorescence microscopy, which we call structured illumination solid immersion fluorescence microscopy (SISIM), to pursue a microscopic system with very large NA and high lateral resolution.

View Article and Find Full Text PDF

In this paper a far field optical technique we call polarization modulation thermal lens microscopy (PM-TLM) is used for imaging the orientation and dichroism of non-spherical nanoparticles. In PM-TLM, the polarization state of a pump beam is periodically modulated which in turn causes morphology related intensity fluctuations in a continuous probe beam, thus allowing high signal to noise ratio detection with using lock-in amplification. Since PM-TLM uses nanoparticle absorption as the contrast mechanism, it may be used to detect and image nanoparticles of far smaller dimensions than can be observed by conventional dark field optical microscopy.

View Article and Find Full Text PDF

This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer.

View Article and Find Full Text PDF

The interaction of cytochrome C and a number of its components such as the apo protein, heme and a coordinated iron with gold nanospheres, has been investigated. The role of the heme group and its effect on the observed spectroscopic properties following binding of cytochrome C to the gold surface has been evaluated. Binding of the heme group directly to the gold is not observed, but the presence of the heme group and its effect on the interaction with the metal surface is shown to be influential.

View Article and Find Full Text PDF

The stochastic transfer function extends the concept of the conventional transfer function by incorporating noise statistics, thus giving a measure of the signal-to-noise ratio at each spatial frequency. This provides a convenient and standardized metric to assess the trade-off in terms of spatial frequency bandwidth and signal-to-noise ratio for a diverse range of resolution enhancement techniques. We apply this concept to structured illumination microscopy and compare its noise performance as a function of frequency with the conventional wide-field fluorescent microscope.

View Article and Find Full Text PDF

We develop the concept of the stochastic transfer function (STF) and its application to high-resolution fluorescence microscopy. The STF is directly related to the conventional optical transfer functions but incorporates a probability density function at each spatial frequency. The mean of the STF yields the conventional transfer function; the variance of the STF gives a measure of the noise associated at each spatial frequency.

View Article and Find Full Text PDF

Structured illumination can be employed to extend the lateral resolution of wide-field fluorescence microscopy. Since a structured illumination microscopy image is reconstructed from a series of several acquired images, we develop a modified formulation of the imaging response of the microscope and a probabilistic analysis to assess the resolution performance. We use this model to compare the fluorescence imaging performance of structured illumination techniques to confocal microscopy.

View Article and Find Full Text PDF

We report bright-field and dark-field surface-plasmon imaging using a modified solid immersion lens and a commercial objective of moderate NA in the epi configuration. The contrast and resolution are extremely good, giving well-resolved images of protein monolayers both in air and in water. We also describe a two-part solid immersion lens that allows the sample to be moved without degrading the image quality in any observable way.

View Article and Find Full Text PDF

A heterodyne interference microscope arrangement for full-field imaging is described. The reference and object beams are formed with highly correlated, time-varying laser speckle patterns. The speckle illumination confers a confocal transfer function to the system, and by temporal averaging, the coherence noise that often degrades coherent full-field microscope images is suppressed.

View Article and Find Full Text PDF

A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency.

View Article and Find Full Text PDF

Measurements of the spatial distributions of polarized light backscattered from a two-layer scattering medium are used to train a neural network. We investigated whether the absorption coefficients and thickness of the layer can be determined when the scattering properties are known. When determining the absorption of the upper layer or the layer's thickness, polarized light measurements provide better performance than unpolarized measurements, demonstrating the sensitivity of polarized light to superficial tissue.

View Article and Find Full Text PDF