Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent.
View Article and Find Full Text PDFChagas disease is a deadly infection caused by the protozoan parasite Trypanosoma cruzi. Afflicting approximately 8 million people in Latin America, Chagas disease is now becoming a serious global health problem proliferating beyond the traditional geographical borders, mainly because of human and vector migration. Because the disease is endemic in low-resource areas, industrial drug development has been lethargic.
View Article and Find Full Text PDFVNI is a potent inhibitor of CYP51 and was recently shown to achieve a parasitological cure of mice infected with T. cruzi in both acute and chronic stages of infection. T.
View Article and Find Full Text PDFHighly enantioselective halolactonizations have been developed that employ a chiral proton catalyst-N-iodosuccinimide (NIS) reagent system in which the Brønsted acid is used at catalyst loadings as low as 1 mol %. An approach that modulates the achiral counterion (equimolar to the neutral chiral ligand-proton complex present at low catalyst loadings) to optimize the enantioselection is documented for the first time in this transformation. In this way, unsaturated carboxylic acids are converted to γ-lactones in high yields (up to 98% ee) using commercially available NIS.
View Article and Find Full Text PDFA Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base.
View Article and Find Full Text PDF