Publications by authors named "Mark C Brundrett"

Nearly 150 years of research has accumulated large amounts of data on mycorrhizal association types in plants. However, this important resource includes unreliable allocated traits for some species. An audit of six commonly used data sources revealed a high degree of consistency in the mycorrhizal status of most species, genera and families of vascular plants, but there were some records that contradict the majority of other data (~ 10% of data overall).

View Article and Find Full Text PDF

Testing of ecological, biogeographical and phylogenetic hypotheses of mycorrhizal traits requires a comprehensive reference dataset about plant mycorrhizal associations. Here we present a database, FungalRoot, which summarizes publicly available data about vascular plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied with rich metadata. We compiled and digitized data about plant mycorrhizal colonization in nine widespread languages.

View Article and Find Full Text PDF

Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions.

View Article and Find Full Text PDF

Contents Summary 1108 I. Introduction 1108 II. Mycorrhizal plant diversity at global and local scales 1108 III.

View Article and Find Full Text PDF

Premise Of The Study: In addition to autotrophic and fully mycoheterotrophic representatives, the orchid family comprises species that at maturity obtain C and N partially from fungal sources. These partial mycoheterotrophs are often associated with fungi that simultaneously form ectomycorrhizas with trees. This study investigates mycorrhizal nutrition for orchids from the southwestern Australian biodiversity hotspot.

View Article and Find Full Text PDF

*Rhizanthella gardneri is a rare and fully subterranean orchid that is presumably obligately mycoheterotrophic. R. gardneri is thought to be linked via a common mycorrhizal fungus to co-occurring autotrophic shrubs, but there is no experimental evidence to support this supposition.

View Article and Find Full Text PDF

An innovative ex situ fungal baiting method using soil collected from field sites which allows the simultaneous detection of mycorrhizal fungi for multiple terrestrial orchids is presented. This method demonstrated that coarse organic matter (> 2 mm) in the litter and topsoil was the most important reservoir of inoculum of these fungi. A new in situ seed baiting method using multi-chambered packets to simultaneously assess germination for different orchid species within soil is also introduced.

View Article and Find Full Text PDF

Here, the coevolution of mycorrhizal fungi and roots is assessed in the light of evidence now available, from palaeobotanical and morphological studies and the analysis of DNA-based phylogenies. The first bryophyte-like land plants, in the early Devonian (400 million years ago), had endophytic associations resembling vesicular-arbuscular mycorrhizas (VAM) even before roots evolved. Mycorrhizal evolution would have progressed from endophytic hyphae towards balanced associations where partners were interdependent due to the exchange of limiting energy and nutrient resources.

View Article and Find Full Text PDF

Spatial variations in the capacity of propagules of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi to form associations in their natural habitats were investigated using bioassays with bait plants grown in intact cores of forest soil. These cores were collected from a sclerophyllous forest community dominated by Eucalyptus marginata Donn ex Smith (jarrah) and E. calophylla Lindley (marri) trees with a diverse shrub understorey in the mediterranean (winter rainfall) climatic zone of Western Australia.

View Article and Find Full Text PDF