Publications by authors named "Mark Burow"

The identification of informative molecular markers is useful for linkage mapping and can benefit genome-wide association studies by providing fine-scale information about sequence variations. However, high-throughput genotyping approaches are not cost-effective for labs that require frequent use, such as breeding programs that need to perform genotyping on large populations with hundreds of individuals. The number of single nucleotide polymorphism markers generated by those approaches can be far more than needed for most breeding programs; instead, breeders focus on the use of at most hundreds of polymorphic molecular markers for analysis.

View Article and Find Full Text PDF

The peanut seed coat acts as a physical and biochemical barrier against infection; however, the nature of the inhibitory chemicals in the peanut seed coat in general is not known. This study identified and characterized peanut seed coat metabolites that inhibit growth and aflatoxin contamination. Selected peanut accessions grown under well-watered and water-deficit conditions were assayed for resistance, and seed coats were metabolically profiled using liquid chromatography mass spectrometry.

View Article and Find Full Text PDF

At the cellular level, membrane damage is a fundamental cause of yield loss at high temperatures (HT). We report our investigations on a subset of a peanut () recombinant inbred line population, demonstrating that the membrane lipid remodeling occurring at HT is consistent with homeoviscous adaptation to maintain membrane fluidity. A major alteration in the leaf lipidome at HT was the reduction in the unsaturation levels, primarily through reductions of 18:3 fatty acid chains, of the plastidic and extra-plastidic diacyl membrane lipids.

View Article and Find Full Text PDF

Early leaf spot (ELS) and late leaf spot (LLS) diseases are the two most destructive groundnut diseases in Ghana resulting in ≤ 70% yield losses which is controlled largely by chemical method. To develop leaf spot resistant varieties, the present study was undertaken to identify single nucleotide polymorphism (SNP) markers and putative candidate genes underlying both ELS and LLS. In this study, six multi-locus models of genome-wide association study were conducted with the best linear unbiased predictor obtained from 294 African groundnut germplasm screened for ELS and LLS as well as image-based indices of leaf spot diseases severity in 2020 and 2021 and 8,772 high-quality SNPs from a 48 K SNP array Axiom platform.

View Article and Find Full Text PDF

Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using visual characterization or laboratory analysis requires substantial expertise, time, and resources. A less subjective and more precise method is needed for identification of peanut germplasm throughout the value chain. In this proof-of-principle study, the accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in peanut phenotyping and identification is explored.

View Article and Find Full Text PDF

Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against infection.

View Article and Find Full Text PDF

Water deficit and salinity are two major abiotic stresses that have tremendous effect on crop yield worldwide. Timely identification of these stresses can help limit associated yield loss. Confirmatory detection and identification of water deficit stress can also enable proper irrigation management.

View Article and Find Full Text PDF

Early and late leaf spot are two devastating diseases of peanut ( L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([ × ( × )]), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars.

View Article and Find Full Text PDF

The use of molecular markers in plant breeding has become a routine practice, but the cost per accession can be a hindrance to the routine use of Quantitative Trait Loci (QTL) identification in breeding programs. In this study, we demonstrate the use of targeted re-sequencing as a proof of concept of a cost-effective approach to retrieve highly informative allele information, as well as develop a bioinformatics strategy to capture the genome-specific information of a polyploid species. SNPs were identified from alignment of raw transcriptome reads (2 × 50 bp) to a synthetic tetraploid genome using BWA followed by a GATK pipeline.

View Article and Find Full Text PDF

Identification of specific genotypes can be accomplished by visual recognition of their distinct phenotypical appearance, as well as DNA analysis. Visual identification (ID) of species is subjective and usually requires substantial taxonomic expertise. Genotyping and sequencing are destructive, time- and labor-consuming.

View Article and Find Full Text PDF

QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits.

View Article and Find Full Text PDF
Article Synopsis
  • Peanuts (Arachis hypogaea) are a nutritious food source, and advancements in genetic research are enhancing their cultivation through improved genomic resources from their diploid ancestors.
  • Researchers re-sequenced 20 peanut genotypes to create a SNP genotyping array, which has identified over 54,000 markers for effective genotyping across different peanut species.
  • The SNP array offers valuable insights into genetic diversity and selection in cultivated peanuts, making it a powerful tool for future breeding and genetic studies.
View Article and Find Full Text PDF

To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs.

View Article and Find Full Text PDF

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging.

View Article and Find Full Text PDF

Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region.

View Article and Find Full Text PDF

The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome.

View Article and Find Full Text PDF

Nitzschia sp. (Bacillariophyceae) was grown under temperature and photoperiods mimicking those, typical during summer, spring/fall and winter conditions in the southern United States, and using five silicate (Si) concentrations. In general, higher Si concentrations resulted in higher growth rates in summer and spring/fall conditions and lower organic content.

View Article and Find Full Text PDF

Isopentenyltransferase (IPT) is a critical enzyme in the cytokinin biosynthetic pathway. The expression of IPT under the control of a maturation- and stress-induced promoter was shown to delay stress-induced plant senescence that resulted in an enhanced drought tolerance in both monocot and dicot plants. This report extends the earlier findings in tobacco and rice to peanut (Arachis hypogaea L.

View Article and Find Full Text PDF

Knowledge of genetic diversity, population structure, and degree of linkage disequilibrium (LD) in target association mapping populations is of great importance and is a prerequisite for LD-based mapping. In the present study, 96 genotypes comprising 92 accessions of the US peanut minicore collection, a component line of the tetraploid variety Florunner, diploid progenitors A. duranensis (AA) and A.

View Article and Find Full Text PDF

Background: Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology.

Results: We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues.

View Article and Find Full Text PDF

The cultivated peanut Arachis hypogaea is a tetraploid, likely derived from A- and B-genome species. Reproductive isolation of the cultigen has resulted in limited genetic variability for important traits. Artificial hybridizations using selected diploid parents have introduced alleles from wild species, but improved understanding of recently classified B-genome accessions would aid future introgression work.

View Article and Find Full Text PDF

Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis.

View Article and Find Full Text PDF

Background: Molecular maps have been developed for many species, and are of particular importance for varietal development and comparative genomics. However, despite the existence of multiple sets of linkage maps, databases of these data are lacking for many species, including peanut.

Description: PeanutMap http://peanutgenetics.

View Article and Find Full Text PDF

Cultivated peanut or groundnut (Arachis hypogaea L) is an important source of oil and protein. Considerable variation has been recorded for morphological, physiological and agronomic traits, whereas few molecular variations have been recorded for this crop. The identification and understanding of molecular genetic diversity in cultivated peanut types will help in effective genetic conservation along with efficient breeding programs in this crop.

View Article and Find Full Text PDF