As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFCharge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.
View Article and Find Full Text PDFJ Acute Care Phys Ther
July 2024
Background: The purpose of this pilot trial was to evaluate the impact of increased frequency of physical therapy sessions with error augmentation on functional mobility and disability outcomes in patients with acute stroke. We hypothesized that participants receiving frequent error augmentation physical therapy interventions (F-EA-PT) would demonstrate a higher degree of improvement on functional mobility and disability measures from admission to three post-intervention time points (treatment day 3, discharge, or 90-day follow-up).
Methods: We allocated 100 individuals to receive either F-EA-PT or standard-of-care physical therapy (SOC-PT).
Understanding how doping influences physicochemical properties of ABO perovskite oxides is critical for tailoring their functionalities. In this study, SrFeCrO epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface.
View Article and Find Full Text PDFCobalt recovery from low-grade mafic and ultramafic ores could be economically viable if combined with CO storage under low-water conditions, but the impact of Co on metal silicate carbonation and the fate of Co during the carbonation reaction must be understood. In this study, infrared spectroscopy was used to investigate the carbonation of Co-doped forsterite ((Mg,Co)SiO) in thin water films in humidified supercritical CO at 50 °C and 90 bar. Rates of carbonation of Co-doped forsterite to Co-rich magnesite ((Mg,Co)CO) increased with water film thickness but were at least 10 times smaller than previously measured for pure forsterite at similar conditions.
View Article and Find Full Text PDFSpectral induced polarization (SIP) responses are not well understood within the context of remediation applications at contaminated sites. Systematic SIP studies are needed to gain further insights into the complex electrical response of dynamic, biogeochemical states to enable the use of SIP for subsurface site characterization and remediation monitoring. Although SIP measurements on zero valent iron have been previously published, the SIP response for sulfur modified iron (SMI), a similar potential subsurface reductive amendment, has not yet been reported.
View Article and Find Full Text PDFThe interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO on SrTiO (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level.
View Article and Find Full Text PDFAluminum hydroxide polymorphs are of widespread importance yet their kinetics of nucleation and growth remain beyond the reach of current models. Here we attempt to unveil the reaction processes underlying the polymorphs formation at high chemical potential. We examine their formation in-situ from supersaturated alkaline sodium aluminate solutions using deuteration and time-resolved neutron pair distribution function analyses, which indicate the formation of individual Al(OD) layers as an intermediate particle phase.
View Article and Find Full Text PDFInvestigating the structural evolution and phase transformation of iron oxides is crucial for gaining a deeper understanding of geological changes on diverse planets and preparing oxide materials suitable for industrial applications. In this study, in-situ heating techniques are employed in conjunction with transmission electron microscopy (TEM) observations and ex-situ characterization to thoroughly analyze the thermal solid-phase transformation of akaganéite 1D nanostructures with varying diameters. These findings offer compelling evidence for a size-dependent morphology evolution in akaganéite 1D nanostructures, which can be attributed to the transformation from akaganéite to maghemite (γ-FeO) and subsequent crystal growth.
View Article and Find Full Text PDFPlantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2023
Objective: To determine whether the measurement properties of an instrument that combines items from the Berg Balance Scale (BBS) and the Functional Gait Assessment (FGA) called the supports measuring balance across the functional mobility spectrum
Design: Retrospective cohort.
Setting: Item-level data were from an archival research database.
Participants: Ambulatory individuals (N=93, BBS=50 [29-56], FGA=16 [0-30], Fugl-Meyer Assessment of Lower Extremities=27 [14-34], self-selected walking speed=0.
Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO with different ground electronic properties before reaching a fully oxidized, metallic SrFeO phase.
View Article and Find Full Text PDFThe purpose of this investigation was to elucidate the relationship between the resting motor threshold (rMT) and active motor threshold (aMT). A cross-sectional comparison of MTs measured at four states of lower extremity muscle activation was conducted: resting, 5% maximal voluntary contraction (MVC), 10%MVC, and standing. MTs were measured at the tibialis anterior in the ipsilesional and contralesional limbs in participants in the chronic phase (>6 months) of stroke ( = 11) and in the dominant limb of healthy controls ( = 11).
View Article and Find Full Text PDFMechanism of hexavalent chromium removal (Cr(VI) as CrO) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO), uranium (U as uranyl UO), and technetium-99 (as TcO), and common environmental anions sulfate (SO) and chloride (Cl). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO at the protonated amine sites.
View Article and Find Full Text PDFMechanistic studies of substrate insertion into dimeric [(NHC)CuH] (NHC=N-heterocyclic carbene) complexes with two bridging hydrides have been shown to require dimer dissociation to generate transient, highly reactive (NHC)Cu-H monomers in solution. Using single-crystal to single-crystal (SC-SC) transformations, we discovered a new pathway of stepwise insertion of CO into [(NHC)CuH] without complete dissociation of the dimer. The first CO insertion into dimeric [(IPr*OMe)CuH] (IPr*OMe=N,N'-bis(2,6-bis(diphenylmethyl)-4-methoxy-phenyl)imidazole-2-ylidene) produced a dicopper formate hydride [(IPr*OMe)Cu] (μ-1,3-O CH)(μ-H).
View Article and Find Full Text PDFAnkle dorsiflexion function during swing phase of the gait cycle contributes to foot clearance and plays an important role in walking ability post-stroke. Commonly used biomechanical measures such as foot clearance and ankle joint excursion have limited ability to accurately evaluate dorsiflexor function in stroke gait. We retrospectively evaluated ankle angular velocity and ankle angular acceleration as direct measures for swing phase dorsiflexor function in post-stroke gait of 61 chronic stroke survivors.
View Article and Find Full Text PDFHierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge.
View Article and Find Full Text PDFPurpose: Poststroke fatigue (PSF) contributes to increased mortality and reduces participation in rehabilitative therapy. Although PSF's negative influences are well known, there are currently no effective evidence-based treatments for PSF. The lack of treatments is in part because of a dearth of PSF pathophysiological knowledge.
View Article and Find Full Text PDFWater electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically.
View Article and Find Full Text PDFThe epitaxial growth of functional oxides using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining freestanding epitaxial nanomembranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically used in growing epitaxial oxides can damage graphene. Here, we demonstrate the successful use of hybrid molecular beam epitaxy for SrTiO growth that does not require an independent oxygen source, thus avoiding graphene damage.
View Article and Find Full Text PDFSoil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering.
View Article and Find Full Text PDFBackground: Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking.
View Article and Find Full Text PDF