Continued growth in the cell therapy industry and commercialization of cell therapies that successfully advance through clinical trials has led to increased awareness around the need for specialized and complex materials utilized in their manufacture. Ancillary materials (AMs) are components or reagents used during the manufacture of cell therapy products but are not intended to be part of the final products. Commonly, there are limitations in the availability of clinical-grade reagents used as AMs.
View Article and Find Full Text PDFThe evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created.
View Article and Find Full Text PDFThe last decade has seen a dramatic rise in the development of new cellular therapeutics in a wide range of indications. There have been acceptable safety profiles reported in early studies using blood-derived and adherent stem cell products, but also an inconsistent efficacy record. Further expansion has been hindered in part by a lack of capital (both private and public) and delayed entry into the cell therapy space by large healthcare and pharmaceutical companies, those members of the industry most reliably able to initiate and maintain advanced-phase clinical trials.
View Article and Find Full Text PDFObjective: Graft-vs-host disease (GVHD) is the major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Models of immunodeficient mice that consistently and efficiently reconstitute with xenoreactive human T cells would be a valuable tool for the in vivo study of GVHD, as well as other human immune responses.
Materials And Methods: We developed a consistent and sensitive model of human GVHD by retro-orbitally injecting purified human T cells into sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD/SCID)-beta2m(null) recipients.
This chapter describes the use of Dynabeads for cell isolation and expansion. Dynabeads are uniform polystyrene spherical beads that have been made magnetisable and superparamagnetic, meaning they are only magnetic in a magnetic field. Due to this property, the beads can easily be resuspended when the magnetic field is removed.
View Article and Find Full Text PDFObjective: Recent clinical trials of adoptive immunotherapy showed diminished reactivity of human T cells upon ex vivo manipulation. For a safe and effective clinical application of human T cells, it is necessary to improve ex vivo manipulation procedures and evaluate their impact on in vivo functionality. However, there is no preclinical model for quantitative assessment of in vivo functionality of human T cells.
View Article and Find Full Text PDFAssessment of the diversity of the T-cell receptor (TCR) repertoire is often determined by measuring the frequency and distribution of individually rearranged TCRs in a population of T cells. Spectratyping is a common method used to measure TCR repertoire diversity, which examines genetic variation in the third complementarity-determining region (CDR3) region of the TCR Vbeta chain using RT-PCR length-distribution analysis. A variety of methods are currently used to analyze spectratype data including subjective visual measures, qualitative counting measures, and semi-quantitative measures that compare the original data to a standard, control data set.
View Article and Find Full Text PDFBackground: Our laboratory has previously shown that adoptive transfer of in vitro-expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo.
Methods: As CD4(+) T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4(+) T-cell expansion, survival and delineate the phenotype of these expanded CD4(+) T cells to be linked to maximal clinical benefit.
Results And Conclusions: The results showed that whereas anti-monkey CD3gamma/epsilon was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3epsilon cross reacting antibodies failed to induce proliferation of macaque CD4(+) T cells.
An increasing number of studies indicate that a subset of CD4(+) T cells with regulatory capacity (regulatory T cells; T(regs)) can function to control organ-specific autoimmune disease. To determine whether abnormalities of thymic-derived T(regs) play a role in systemic lupus erythematosus, we evaluated T(reg) prevalence and function in (New Zealand Black x New Zealand White)F(1) (B/W) lupus-prone mice. To explore the potential of T(regs) to suppress disease, we evaluated the effect of adoptive transfer of purified, ex vivo expanded thymic-derived T(regs) on the progression of renal disease.
View Article and Find Full Text PDFCD4+CD25+ regulatory T cells (T(REG)) are engaged in the regulation of murine and human immune responses as well as graft-versus-host disease (GvHD) after allogeneic stem-cell transplantation. Despite their suppression of GvHD they do not impair graft-versus-tumor activity in the mouse, which makes T(REG) especially attractive candidates for cellular immunotherapy. T(REG) comprise only 5% to 10% of CD4+ T cells in peripheral blood and are naturally anergic, which prevented their use as therapeutic suppressor cells in the context of autoimmune or alloimmune reactions so far.
View Article and Find Full Text PDFCD4+CD25+ immunoregulatory T cells (Tregs) can be administered to inhibit graft-vs-host disease (GVHD) while preserving graft-vs-leukemia activity after allogeneic bone marrow transplantation in mice. Preclinical studies suggest that it is necessary to infuse as many Tregs as conventional donor T cells to achieve a clinical effect on GVHD. Thus, it would be necessary to expand Tregs ex vivo before transplantation.
View Article and Find Full Text PDFA major limitation of adoptive immunotherapy is the availability of T cells specific for both terminally differentiated tumor cells and their clonogenic precursors. We show here that marrow-infiltrating lymphocytes (MILs) recognize myeloma cells after activation with anti-CD3/CD28 beads with higher frequency than activated peripheral blood lymphocytes from the same patients. Furthermore, activated MILs target both the terminally differentiated CD138+ plasma cells and the myeloma precursor as shown by profound inhibition in a tumor clonogenic assay.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is characterized by the accumulation of leukemic B cells concomitant with immunological abnormalities and depressed immune responses. The T cell abnormalities found in CLL patients are thought to increase the risk of infection and hamper immune recognition and elimination of leukemic cells. We evaluated whether providing signals through CD3 and CD28 would correct some of these T cell defects.
View Article and Find Full Text PDFT-cell receptor engagement and accompanying costimulatory signals control the level of activation and functional potential of individual T cells. The authors previously developed a novel technology in which human T cells are activated and expanded in culture ex vivo using anti-CD3 and anti-CD28 monoclonal antibodies covalently linked to superparamagnetic beads (Xcyte Dynabeads). In this study the addition of N-acetyl L-cysteine (NAC) to the cultures markedly increased the expansion of T cells from human peripheral blood mononuclear cells without diminishing cell function.
View Article and Find Full Text PDFThe low number of CD4+ CD25+ regulatory T cells (Tregs), their anergic phenotype, and diverse antigen specificity present major challenges to harnessing this potent tolerogenic population to treat autoimmunity and transplant rejection. In this study, we describe a robust method to expand antigen-specific Tregs from autoimmune-prone nonobese diabetic mice. Purified CD4+ CD25+ Tregs were expanded up to 200-fold in less than 2 wk in vitro using a combination of anti-CD3, anti-CD28, and interleukin 2.
View Article and Find Full Text PDF