An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb.
View Article and Find Full Text PDFUnlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism.
View Article and Find Full Text PDFInterfacing superconductors with strongly spin-polarized magnetic materials opens the possibility to discover new spintronic devices in which spin-triplet Cooper pairs play a key role. Motivated by the recent derivation of spin-polarized quasiclassical boundary conditions capable of describing such a scenario in the diffusive limit, we consider the emergent physics in hybrid structures comprised of a conventional s-wave superconductor (e.g.
View Article and Find Full Text PDFRecent discoveries from superconductor (S)/ferromagnet (FM) heterostructures include π-junctions, triplet pairing, critical temperature (T) control in FM/S/FM superconducting spin valves (SSVs) and critical current control in S/FM/N/FM/S spin valve Josephson junctions (N: normal metal). In all cases, the magnetic state of the device, generally set by the applied field, controls the superconducting response. We report here the observation of the converse effect, that is, direct superconducting control of the magnetic state in GdN/Nb/GdN SSVs.
View Article and Find Full Text PDFTransparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2.
View Article and Find Full Text PDFFerromagnetic insulating thin films of Sm(0.34)Sr(0.66)MnO3 (SSMO) on (001) SrTiO3 substrates with a T(C) of 140 K were formed in self-assembled epitaxial nanocomposite thin films.
View Article and Find Full Text PDFHighly strained films of BiFeMnO (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism ( ∼ 600K), with a room temperature saturation moment ( ) of up to 90 emu/cc (∼ 0.58 /f.
View Article and Find Full Text PDFA highly unconventional bias-dependent tunnel magnetoresistance (TMR) response is observed in Sm0.75 Sr0.25 MnO3 -based nanopillar spin filter tunnel junctions (SFTJs) with two different behaviors in two different thickness regimes of the barrier layer.
View Article and Find Full Text PDFThe potential of a manganite ferromagnetic insulator in the field of spin-filtering has been demonstrated. For this, an ultrathin film of Sm0.75Sr0.
View Article and Find Full Text PDFLa2CoMnO6 (LcmO)-ZnO nanocomposite thin films grown on SrTiO3 and Nb-SrTiO3 (001) are investigated. The films grow in the form of self-assembled epitaxial vertically aligned structures. We show that, at 120 K, an electric field applied across the nanocomposite reversibly alters magnetic properties of LcmO.
View Article and Find Full Text PDFIn order to study the fundamental conduction mechanism of LaAlO3/SrTiO3 (LAO/STO) interfaces, heterostructures were modified with a single unit cell interface layer of either an isovalent titanate ATiO3 (A = Ca, Sr, Sn, Ba) or a rare earth modified Sr0.5RE0.5TiO3 (RE = La, Nd, Sm, Dy) between the LAO and the STO.
View Article and Find Full Text PDFJosephson junctions with ferromagnetic barriers have been intensively investigated in recent years. Of particular interest has been the realization of so called π-junctions with a built-in phase difference, and induced triplet pairing. Such experiments have so far been limited to systems containing metallic ferromagnets.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2009
We report that the La(0.35)Sr(0.65)Ti(1-x)Fe(x)O(3) system forms a solid solution within the composition range 0≤x≤0.
View Article and Find Full Text PDFTwo-phase, vertical nanocomposite heteroepitaxial films hold great promise for (multi)functional device applications. In order to achieve practical devices, a number of hurdles need to be overcome, including the creation of ordered structures (and their formation on a large scale), achieving different combinations of materials and control of strain coupling between the phases. Here we demonstrate major advances on all these fronts: remarkable spontaneously ordered structures were produced in newly predicted compositions, vertical strain was proven to dominate the strain state in films above 20 nm thickness and strain manipulation was demonstrated by selection of phases with the appropriate elastic moduli.
View Article and Find Full Text PDFWe show that a thin Gd layer inserted between two thicker layers of permalloy contains an in-plane domain wall whose width can be controlled by varying the thickness of the Gd layer. The magnetoresistance of this structure has been measured with the current perpendicular to the plane, thus eliminating spurious contributions which have complicated previous measurements. This is the first measurement to show unambiguously that the domain wall contributes an additional resistance whose magnitude is in good agreement with theory.
View Article and Find Full Text PDF