The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while optogenetic excitation has opposing effects. However, STN neurons often exhibit movement-related increases in firing.
View Article and Find Full Text PDFThe subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while ontogenetic excitation typically has opposing effects. Subthalamic and motor activity are also inversely correlated in movement disorders.
View Article and Find Full Text PDFThe debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood.
View Article and Find Full Text PDFThe basal ganglia regulate our behavior through the promotion and suppression of the actions that we perform. A new study has revealed a basal ganglia feedback circuit between the striatum and globus pallidus that can powerfully inhibit locomotion in mice.
View Article and Find Full Text PDFKey Points: Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe-STN network activity are linked to motor dysfunction. Using cell class-specific optogenetic identification and inhibition during cortical slow-wave activity and activation, we report that, in dopamine-depleted mice, (1) D2 dopamine receptor expressing striatal projection neurons (D2-SPNs) discharge at higher rates, especially during cortical activation, (2) prototypic parvalbumin-expressing GPe neurons are excessively patterned by D2-SPNs even though their autonomous activity is upregulated, (3) despite being disinhibited, STN neurons are not hyperactive, and (4) STN activity opposes striatopallidal patterning.
View Article and Find Full Text PDFSubstantia nigra dopamine neurons have been implicated in the initiation and invigoration of movement, presumably through their modulation of striatal projection neuron (SPN) activity. However, the impact of native dopaminergic transmission on SPN excitability has not been directly demonstrated. Using perforated patch-clamp recording, we found that optogenetic stimulation of nigrostriatal dopamine axons rapidly and persistently elevated the excitability of D1 receptor-expressing SPNs (D1-SPNs).
View Article and Find Full Text PDFObjective: Around one in five emergency hospital admissions are affected by acute kidney injury (AKI). To address poor quality of care in relation to AKI, electronic alerts (e-alerts) are mandated across primary and secondary care in England and Wales. Evidence of the benefit of AKI e-alerts remains conflicting, with at least some uncertainty explained by poor or unclear implementation.
View Article and Find Full Text PDFAbnormal subthalamic nucleus (STN) activity is linked to impaired movement in Parkinson's disease (PD). The autonomous firing of STN neurons, which contributes to their tonic excitation of the extrastriatal basal ganglia and shapes their integration of synaptic input, is downregulated in PD models. Using electrophysiological, chemogenetic, genetic, and optical approaches, we find that chemogenetic activation of indirect pathway striatopallidal neurons downregulates intrinsic STN activity in normal mice but this effect is occluded in Parkinsonian mice.
View Article and Find Full Text PDFMobility is a key aspect of active ageing enabling participation and autonomy into later life. Remaining active brings multiple physical but also social benefits leading to higher levels of well-being. With globally increasing levels of urbanisation alongside demographic shifts meaning in many parts of the world this urban population will be older people, the challenge is how cities should evolve to enable so-called active ageing.
View Article and Find Full Text PDFThe motor symptoms of Parkinson's disease (PD) are linked to abnormally correlated and coherent activity in the cortex and subthalamic nucleus (STN). However, in parkinsonian mice we found that cortico-STN transmission strength had diminished by 50%-75% through loss of axo-dendritic and axo-spinous synapses, was incapable of long-term potentiation, and less effectively patterned STN activity. Optogenetic, chemogenetic, genetic, and pharmacological interrogation suggested that downregulation of cortico-STN transmission in PD mice was triggered by increased striato-pallidal transmission, leading to disinhibition of the STN and increased activation of STN NMDA receptors.
View Article and Find Full Text PDFThe subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD.
View Article and Find Full Text PDFIn considering the role of place in supporting positive well-being choices for all, including older people, there has been an almost exclusive focus on issues of design in the public realm. Emerging findings from the Co-Motion project suggest that the experience of being out and about can be also facilitated or profoundly damaged by the attitudes and behaviours of fellow public realm users.
View Article and Find Full Text PDFBackground: Although the efficacy of computerized clinical decision support (CCDS) for acute kidney injury (AKI) remains unclear, the wider literature includes examples of limited acceptability and equivocal benefit. Our single-centre study aimed to identify factors promoting or inhibiting use of in-patient AKI CCDS.
Methods: Targeting medical users, CCDS triggered with a serum creatinine rise of ≥25 μmol/L/day and linked to guidance and test ordering.
The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs.
View Article and Find Full Text PDFThe development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing "indirect-pathway," the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior.
View Article and Find Full Text PDFIn this article I propose a method of interviewing for descriptive phenomenological research that offers an explicit, theoretically based approach for researchers. My approach enables application of descriptive phenomenology as a total method for research, and not one just focused on data analysis. This structured phenomenological approach to interviewing applies questions based on themes of experience contextualization, apprehending the phenomenon and its clarification.
View Article and Find Full Text PDFThe frequency and pattern of activity in the reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) are closely related to motor function. Although phasic, unitary GPe-STN inputs powerfully pattern STN activity ex vivo, correlated GPe-STN activity is not normally observed in vivo. To test the hypothesis that the GPe's influence is constrained by short-term synaptic depression, unitary GPe-STN inputs were stimulated in rat and mouse brain slices at rates and in patterns that mimicked GPe activity in vivo.
View Article and Find Full Text PDFThe symptoms of Parkinson's disease (PD) are related to changes in the frequency and pattern of activity in the reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN). In idiopathic and experimental PD, the GPe and STN exhibit hypoactivity and hyperactivity, respectively, and abnormal synchronous rhythmic burst firing. Following lesion of midbrain dopamine neurons, abnormal STN activity emerges slowly and intensifies gradually until it stabilizes after 2-3 weeks.
View Article and Find Full Text PDFThe activity patterns of subthalamic nucleus (STN) neurons are intimately linked to motor function and dysfunction and arise through the complex interaction of intrinsic properties and inhibitory and excitatory synaptic inputs. In many neurons, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play key roles in intrinsic excitability and synaptic integration both under normal conditions and in disease states. However, in STN neurons, which strongly express HCN channels, their roles remain relatively obscure.
View Article and Find Full Text PDFBurst firing of substantia nigra dopamine (SN DA) neurons is believed to represent an important teaching signal that instructs synaptic plasticity and associative learning. However, the mechanisms through which synaptic excitation overcomes the limiting effects of somatic Ca(2+)-dependent K(+) current to generate burst firing are controversial. Modeling studies suggest that synaptic excitation sufficiently amplifies oscillatory dendritic Ca(2+) and Na(+) channel currents to lead to the initiation of high-frequency firing in SN DA neuron dendrites.
View Article and Find Full Text PDFThe reciprocally connected GABAergic globus pallidus (GP)-glutamatergic subthalamic nucleus (STN) network is critical for voluntary movement and an important site of dysfunction in movement disorders such as Parkinson's disease. Although the GP is a key determinant of STN activity, correlated GP-STN activity is rare under normal conditions. Here we define fundamental features of the GP-STN connection that contribute to poorly correlated GP-STN activity.
View Article and Find Full Text PDFThe activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling.
View Article and Find Full Text PDFReciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern 'pathological' activity in STN neurons. Electrically evoked GABA(A) receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.
View Article and Find Full Text PDF