Publications by authors named "Mark Berryman"

infection (CDI) with high morbidity and high mortality is an urgent threat to public health, and pathogenesis studies are eagerly required for CDI therapy. The major surface layer protein, SlpA, was supposed to play a key role in pathogenesis; however, a lack of isogenic mutants has greatly hampered analysis of SlpA functions. In this study, the whole gene was successfully deleted for the first time via CRISPR-Cas9 system.

View Article and Find Full Text PDF

Gene targeting of Cdc42 GTPase has been shown to inhibit platelet activation. In this study, we investigated a hypothesis that inhibition of Cdc42 activity by CASIN, a small molecule Cdc42 Activity-Specific INhibitor, may down regulate platelet activation and thrombus formation. We investigated the effects of CASIN on platelet activation in vitro and thrombosis in vivo.

View Article and Find Full Text PDF

The effects of noise-induced hearing loss have yet to be studied for the Dutch-belted strain of rabbits, which is the only strain that has been used in studies of the central auditory system. We measured auditory brainstem responses (ABRs), 2f-f distortion product otoacoustic emissions (DPOAEs), and counts of cochlear inner and outer hair cells (IHCs and OHCs, respectively) from confocal images of Myo7a-stained cochlear whole-mounts in unexposed and noise-overexposed, Dutch-belted, male and female rabbits in order to characterize cochlear function and structure under normal-hearing and hearing-loss conditions. Using an octave-band noise exposure centered at 750 Hz presented under isoflurane anesthesia, we found that a sound level of 133 dB SPL for 60 min was minimally sufficient to produce permanent ABR threshold shifts.

View Article and Find Full Text PDF

Chloride intracellular channel (CLICs) proteins show 60-70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, "Molecular identity of cardiac mitochondrial chloride intracellular channel proteins" (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells.

View Article and Find Full Text PDF

Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart.

View Article and Find Full Text PDF

Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles.

View Article and Find Full Text PDF

Background: Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension is a disorder of vascular remodeling causing increased resistance to pulmonary blood flow. The expression of proteins in lungs from pulmonary arterial hypertension patients was investigated in an unbiased approach to further understand the pathobiology of this disease.

Methods And Results: Label-free liquid chromatography tandem mass spectrometry was used to compare protein profiles in surgical samples of lungs from 8 patients with pulmonary arterial hypertension and 8 control subjects.

View Article and Find Full Text PDF

Chloride intracellular channel 5 (CLIC5) and other CLIC isoforms have been implicated in a number of biological processes, but their specific functions are poorly understood. The association of CLIC5 with ezrin and the actin cytoskeleton led us to test its possible involvement in gastric acid secretion. Clic5 mutant mice exhibited only a minor reduction in acid secretion, Clic5 mRNA was expressed at only low levels in stomach, and Clic5 mutant parietal cells were ultrastructurally normal, negating the hypothesis that CLIC5 plays a major role in acid secretion.

View Article and Find Full Text PDF

The chloride intracellular channel 5A (CLIC5A) protein, one of two isoforms produced by the CLIC5 gene, was isolated originally as part of a cytoskeletal protein complex containing ezrin from placental microvilli. Whether CLIC5A functions as a bona fide ion channel is controversial. We reported previously that a CLIC5 transcript is enriched approximately 800-fold in human renal glomeruli relative to most other tissues.

View Article and Find Full Text PDF

Chloride intracellular channel (CLIC) 4 is a soluble protein structurally related to omega-type glutathione-S-transferases (GSTs) and implicated in various biological processes, ranging from chloride channel formation to vascular tubulogenesis. However, its function(s) and regulation remain unclear. Here, we show that cytosolic CLIC4 undergoes rapid but transient translocation to discrete domains at the plasma membrane upon stimulation of G(13)-coupled, RhoA-activating receptors, such as those for lysophosphatidic acid, thrombin, and sphingosine-1-phosphate.

View Article and Find Full Text PDF

Rationale: S100A4/Mts1 is implicated in motility of human pulmonary artery smooth muscle cells (hPASMCs), through an interaction with the RAGE (receptor for advanced glycation end products).

Objective: We hypothesized that S100A4/Mts1-mediated hPASMC motility might be enhanced by loss of function of bone morphogenetic protein (BMP) receptor (BMPR)II, observed in pulmonary arterial hypertension.

Methods And Results: Both S100A4/Mts1 (500 ng/mL) and BMP-2 (10 ng/mL) induce migration of hPASMCs in a novel codependent manner, in that the response to either ligand is lost with anti-RAGE or BMPRII short interference (si)RNA.

View Article and Find Full Text PDF

New capillaries are formed through angiogenesis and an integral step in this process is endothelial tubulogenesis. The molecular mechanisms driving tube formation during angiogenesis are not yet delineated. Recently, the chloride intracellular channel 4 (CLIC4)-orthologue EXC-4 was found to be necessary for proper development and maintenance of the Caenorhabditis elegans excretory canal, implicating CLIC4 as a regulator of tubulogenesis.

View Article and Find Full Text PDF

The crystal structures of two CLIC family members DmCLIC and EXC-4 from the invertebrates Drosophila melanogaster and Caenorhabditis elegans, respectively, have been determined. The proteins adopt a glutathione S-transferase (GST) fold. The structures are highly homologous to each other and more closely related to the known structures of the human CLIC1 and CLIC4 than to GSTs.

View Article and Find Full Text PDF

Although CLIC5 is a member of the chloride intracellular channel protein family, its association with actin-based cytoskeletal structures suggests that it may play an important role in their assembly or maintenance. Mice homozygous for a new spontaneous recessive mutation of the Clic5 gene, named jitterbug (jbg), exhibit impaired hearing and vestibular dysfunction. The jbg mutation is a 97 bp intragenic deletion that causes skipping of exon 5, which creates a translational frame shift and premature stop codon.

View Article and Find Full Text PDF

The structure of CLIC4, a member of the CLIC family of putative intracellular chloride ion channel proteins, has been determined at 1.8 Angstroms resolution by X-ray crystallography. The protein is monomeric and it is structurally similar to CLIC1, belonging to the GST fold class.

View Article and Find Full Text PDF

CLIC-5A is a member of the chloride intracellular channel protein family, which is comprised of six related human genes encoding putative chloride channels. In this study, we found that reconstitution of purified recombinant CLIC-5A into artificial liposomes resulted in a dose-dependent chloride efflux that was sensitive to the chloride channel blocker IAA-94. CLIC-5A was originally isolated as a component of an ezrin-containing cytoskeletal complex from human placental microvilli.

View Article and Find Full Text PDF

Unlabelled: Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone formation.

View Article and Find Full Text PDF

We have identified for the first time the presence of chloride intracellular channel (CLIC) proteins in bovine epididymal spermatozoa. CLIC1 was discovered during microsequencing of proteins that co-purified with protein phosphatase 1, PP1gamma2, in sperm extracts. In addition to CLIC1, Western blot showed that two additional CLIC family members, CLIC4 and CLIC5, are also present in spermatozoa.

View Article and Find Full Text PDF

CLIC4 is a member of the chloride intracellular channel (CLIC) protein family whose principal cellular functions are poorly understood. Recently, we demonstrated that several CLIC proteins, including CLIC4, interact with AKAP350. AKAP350 is concentrated at the Golgi apparatus, centrosome, and midbody and acts as a scaffolding protein for several protein kinases and phosphatases.

View Article and Find Full Text PDF

AKAP350 can scaffold a number of protein kinases and phosphatases at the centrosome and the Golgi apparatus. We performed a yeast two-hybrid screen of a rabbit parietal cell library with a 3.2-kb segment of AKAP350 (nucleotides 3611-6813).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: