Publications by authors named "Mark Begonia"

Article Synopsis
  • The study aimed to evaluate the performance of three shell add-on products for helmets under varsity-level impact conditions through laboratory tests.
  • Pendulum impact tests measured head kinematics and concussion risk with different helmet models and configurations to assess each add-on's effectiveness.
  • Results showed that the Guardian NXT add-on significantly reduced peak linear acceleration, peak rotational acceleration, and concussion risk more than the other two products, emphasizing the importance of helmet model selection for improved head protection.
View Article and Find Full Text PDF

Many recent studies have used boil-and-bite style instrumented mouthguards to measure head kinematics during impact in sports. Instrumented mouthguards promise greater accuracy than their predecessors because of their superior ability to couple directly to the skull. These mouthguards have been validated in the lab and on the field, but little is known about the effects of decoupling during impact.

View Article and Find Full Text PDF

Helmet-testing headforms replicate the human head impact response, allowing the assessment of helmet protection and injury risk. However, the industry uses three different headforms with varying inertial and friction properties making study comparisons difficult because these headforms have different inertial and friction properties that may affect their impact response. This study aimed to quantify the influence of headform coefficient of friction (COF) and inertial properties on oblique impact response.

View Article and Find Full Text PDF

Head impact sensors worn in the mouth are popular because they couple directly to the teeth and provide six-degree-of-freedom head measurements. Mouthpiece signal filters have conventionally used cutoff frequencies lower than recommended practices (Society of Automotive Engineers, SAE J211-1) to eliminate extraneous noise when measuring with live subjects. However, there is little information about the effects of filter choice on the accuracy of signals measured by instrumented mouthpieces.

View Article and Find Full Text PDF

More than six million people participate in whitewater kayaking and rafting in the United States each year. Unfortunately, with these six million whitewater participants come 50 deaths annually, making it one of the highest fatality rates of all sports. As the popularity in whitewater activities grows, the number of injuries, including concussions, also increases.

View Article and Find Full Text PDF

Wearable devices are increasingly used to measure real-world head impacts and study brain injury mechanisms. These devices must undergo validation testing to ensure they provide reliable and accurate information for head impact sensing, and controlled laboratory testing should be the first step of validation. Past validation studies have applied varying methodologies, and some devices have been deployed for on-field use without validation.

View Article and Find Full Text PDF

Objectives: Assess the validity and feasibility of current instrumented mouthguards (iMGs) and associated systems.

Methods: Phase I; four iMG systems (Biocore-Football Research Inc (FRI), HitIQ, ORB, Prevent) were compared against dummy headform laboratory criterion standards (25, 50, 75, 100 ). Phase II; four iMG systems were evaluated for on-field validity of iMG-triggered events against video-verification to determine true-positives, false-positives and false-negatives (20±9 player matches per iMG).

View Article and Find Full Text PDF

Brain strain is increasingly being used in helmet design and safety performance evaluation as it is generally considered as the primary mechanism of concussion. In this study, we investigate whether different helmet designs can meaningfully alter brain strains using two commonly used metrics, peak maximum principal strain (MPS) of the whole brain and cumulative strain damage measure (CSDM). A convolutional neural network (CNN) that instantly produces detailed brain strains is first tested for accuracy for helmeted head impacts.

View Article and Find Full Text PDF

Drones have been increasing in popularity and are able to cause skin injuries ranging from minor abrasions to severe lacerations. The objective of this study was to determine the aspects of drone blades that cause injuries, and to help manufacturers design safer drones by suggesting an injury threshold. The blade tip thickness, blade length, angular velocity, and blade tip speed of a variety of popular drones were measured.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death in the United States. Depending on the severity of injury, complications such as memory loss and emotional changes are common. While the exact mechanisms are still unclear, these cognitive deficiencies are thought to arise from microstructural damages to the brain tissue, such as in diffuse-axonal injury where neuron fibers are sheared.

View Article and Find Full Text PDF

We examined the changes in mechanical strain response of male and female mouse tibia and ulna, using axial compression tests, to assess age-related changes in tibiae and ulnae by a non-contact strain measurement technique called the digital image correlation (DIC) and the standard strain gage. A unique aspect of the study was to compare bones from the same animal to study variations in behavior with aging. This study was conducted using male and female C57Bl/6 mice at 6, 12 and 22 months of age (N=6-7 per age and sex) using three load levels.

View Article and Find Full Text PDF

Measuring head impacts in sports can further our understanding of brain injury biomechanics and, hopefully, advance concussion diagnostics and prevention. Although there are many head impact sensors available, skepticism on their utility exists over concerns related to measurement error. Previous studies report mixed reliability in head impact sensor measurements, but there is no uniform approach to assessing accuracy, making comparisons between sensors and studies difficult.

View Article and Find Full Text PDF

Osteocytes are thought to be the primary mechanosensory cells within bone, regulating both osteoclasts and osteoblasts to control load induced changes in bone resorption and formation. Osteocytes initiate intracellular responses including activating the Wnt/β-catenin signaling pathway after experiencing mechanical forces. In response to changing mechanical loads (strain) the osteocytes signal to cells on the bone surface.

View Article and Find Full Text PDF

Aging is known to reduce bone quality and bone strength. We sought to determine how aging affects the biomechanical and architectural properties of various long bones, and if sex influences age related differences/changes. While researchers have extensively studied these changes in individual bones of mice, there is no comprehensive study of the changes in the bones from the same mice to study the changes with aging.

View Article and Find Full Text PDF

Youth football helmet testing standards have served to largely eliminate catastrophic head injury from the sport. These standards, though, do not presently consider concussion and do not offer consumers the capacity to differentiate the impact performance of youth football helmets. This study adapted the previously developed Summation of Tests for the Analysis of Risk (STAR) equation for youth football helmet assessment.

View Article and Find Full Text PDF

Designing protective systems for the human head-and, hence, the brain-requires understanding the brain's microstructural response to mechanical insults. We present the behavior of wet and dry porcine brain undergoing quasi-static and high strain rate mechanical deformations to unravel the effect of hydration on the brain's biomechanics. Here, native 'wet' brain samples contained ~80% (mass/mass) water content and 'dry' brain samples contained ~0% (mass/mass) water content.

View Article and Find Full Text PDF

Blunt impact assessment of the Advanced Combat Helmet (ACH) is currently based on the linear head response. The current study presents a methodology for testing the ACH under complex loading that generates linear and rotational head motion. Experiments were performed on a guided, free-fall drop tower using an instrumented National Operating Committee for Standards on Athletic Equipment (NOCSAE) head attached to a Hybrid III (HIII) or EuroSID-2 (ES-2) dummy neck and carriage.

View Article and Find Full Text PDF

Anthropomorphic test devices (ATDs) are designed for specific loading scenarios and possess uniquely designed individual components including the neck. The purpose of this study was to determine the influence of the neck surrogate on head kinematics. Inertial loads were generated using a pendulum system with an anthropomorphic head attached to a Hybrid III (HIII) or EuroSID-2 (ES-2) neck.

View Article and Find Full Text PDF

The determination of the elastic modulus of bone is important in studying the response of bone to loading and is determined using a destructive three-point bending method. Reference point indentation (RPI), with one cycle of indentation, offers a nondestructive alternative to determine the elastic modulus. While the elastic modulus could be determined using a nondestructive procedure for ex vivo experiments, for in vivo testing, the three-point bending technique may not be practical and hence RPI is viewed as a potential alternative and explored in this study.

View Article and Find Full Text PDF

Objective: This study analyzed the influence of reference sensor inputs from anthropomorphic test devices (ATDs) versus postmortem human subjects (PMHSs) on simulations of frontal blunt impacts to the advanced combat helmet (ACH).

Methods: A rigid-arm pendulum was used to generate frontal impacts to ACHs mounted on ATDs and PMHS. An appropriately sized ACH was selected according to standard fitting guidelines.

View Article and Find Full Text PDF

Mechanical loading in bone leads to the activation of bone-forming pathways that are most likely associated with a minimum strain threshold being experienced by the osteocyte. To investigate the correlation between cellular response and mechanical stimuli, researchers must develop accurate ways to measure/compute strain both externally on the bone surface and internally at the osteocyte level. This study investigates the use of finite element (FE) models to compute bone surface strains on the mouse forearm.

View Article and Find Full Text PDF

This study investigates the use of a non-contact method known as digital image correlation (DIC) to measure strains in the mouse forearm during axial compressive loading. A two camera system was adapted to analyze the medial and lateral forearm displacements simultaneously, and the derived DIC strain measurements were compared to strain gage readings from both the ulna and radius. Factors such as region-of-interest (ROI) location, lens magnification, noise, and out-of-plane motion were examined to determine their influence on the DIC strain measurements.

View Article and Find Full Text PDF

This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.

View Article and Find Full Text PDF

Purpose: To determine the relative importance of intramedullary wire (IMW) diameter and IMW number in conferring stability to a metacarpal fracture fixation construct. Our research hypothesis was that the stiffness of IMW fixation for metacarpal shaft fractures using a single 1.6-mm-diameter (0.

View Article and Find Full Text PDF

This study examines the internal microstructure evolution of porcine brain during mechanical deformation. Strain rate dependency of porcine brain was investigated under quasi-static compression for strain rates of 0.00625, 0.

View Article and Find Full Text PDF