Publications by authors named "Mark Beaumont"

This paper asks the question: can genomic information be used to recover a species that is already on the pathway to extinction due to genetic swamping from a related and more numerous population? We show that a breeding strategy in a captive breeding program can use whole genome sequencing to identify and remove segments of DNA introgressed through hybridisation. The proposed policy uses a generalized measure of kinship or heterozygosity accounting for local ancestry, that is, whether a specific genetic location was inherited from the target of conservation. We then show that optimizing these measures would minimize undesired ancestry while also controlling kinship and/or heterozygosity, in a simulated breeding population.

View Article and Find Full Text PDF

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed.

View Article and Find Full Text PDF

The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats, though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years, the onset of hybridization was only within the last 70 years.

View Article and Find Full Text PDF

Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle.

View Article and Find Full Text PDF

Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation.

View Article and Find Full Text PDF

Innovations in ancient DNA (aDNA) preparation and sequencing technologies have exponentially increased the quality and quantity of aDNA data extracted from ancient biological materials. The additional temporal component from the incoming aDNA data can provide improved power to address fundamental evolutionary questions like characterizing selection processes that shape the phenotypes and genotypes of contemporary populations or species. However, utilizing aDNA to study past selection processes still involves considerable hurdles like how to eliminate the confounding factor of genetic interactions in the inference of selection.

View Article and Find Full Text PDF

Novel technologies for recovering DNA information from archaeological and historical specimens have made available an ever-increasing amount of temporally spaced genetic samples from natural populations. These genetic time series permit the direct assessment of patterns of temporal changes in allele frequencies and hold the promise of improving power for the inference of selection. Increased time resolution can further facilitate testing hypotheses regarding the drivers of past selection events such as the incidence of plant and animal domestication.

View Article and Find Full Text PDF

The field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes.

View Article and Find Full Text PDF

With the rapid growth of the number of sequenced ancient genomes, there has been increasing interest in using this new information to study past and present adaptation. Such an additional temporal component has the promise of providing improved power for the estimation of natural selection. Over the last decade, statistical approaches for the detection and quantification of natural selection from ancient DNA (aDNA) data have been developed.

View Article and Find Full Text PDF

While hybridisation has long been recognised as an important natural phenomenon in evolution, the conservation of taxa subject to introgressive hybridisation from domesticated forms is a subject of intense debate. Hybridisation of Scottish wildcats and domestic cats is a good example in this regard. Here, we developed a modelling framework to determine the timescale of introgression using approximate Bayesian computation (ABC).

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum) is one of the world's most important crops; however, a low level of genetic diversity within commercial breeding accessions can significantly limit breeding potential. In contrast, wheat relatives exhibit considerable genetic variation and so potentially provide a valuable source of novel alleles for use in breeding new cultivars. Historically, gene flow between wheat and its relatives may have contributed novel alleles to the bread wheat pangenome.

View Article and Find Full Text PDF

Hybridisation can lead to homoploid hybrid speciation, i.e., the origin of new species without change in chromosome number between parents and offspring.

View Article and Find Full Text PDF

Recent advances in DNA sequencing techniques have made it possible to monitor genomes in great detail over time. This improvement provides an opportunity for us to study natural selection based on time serial samples of genomes while accounting for genetic recombination effect and local linkage information. Such time series genomic data allow for more accurate estimation of population genetic parameters and hypothesis testing on the recent action of natural selection.

View Article and Find Full Text PDF

Temporally spaced genetic data allow for more accurate inference of population genetic parameters and hypothesis testing on the recent action of natural selection. In this work, we develop a novel likelihood-based method for jointly estimating selection coefficient and allele age from time series data of allele frequencies. Our approach is based on a hidden Markov model where the underlying process is a Wright-Fisher diffusion conditioned to survive until the time of the most recent sample.

View Article and Find Full Text PDF

Relaxed molecular clock methods allow the use of genomic data to estimate divergence times across the tree of life. This is most commonly achieved in Bayesian analyses where the molecular clock is calibrated a priori through the integration of fossil information. Alternatively, fossil calibrations can be used a posteriori, to transform previously estimated relative divergence times that were inferred without considering fossil information, into absolute divergence times.

View Article and Find Full Text PDF

Advances in phenology (the annual timing of species' life-cycles) in response to climate change are generally viewed as bioindicators of climate change, but have not been considered as predictors of range expansions. Here, we show that phenology advances combine with the number of reproductive cycles per year (voltinism) to shape abundance and distribution trends in 130 species of British Lepidoptera, in response to ~0.5 °C spring-temperature warming between 1995 and 2014.

View Article and Find Full Text PDF

Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites.

View Article and Find Full Text PDF

A puzzle of language is how speakers come to use the same words for particular meanings, given that there are often many competing alternatives (e.g., "sofa," "couch," "settee"), and there is seldom a necessary connection between a word and its meaning.

View Article and Find Full Text PDF

We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model.

View Article and Find Full Text PDF

The estimation of substitution and recombination rates can provide important insights into the molecular evolution of protein-coding sequences. Here, we present a new computational framework, called "CodABC," to jointly estimate recombination, substitution and synonymous and nonsynonymous rates from coding data. CodABC uses approximate Bayesian computation with and without regression adjustment and implements a variety of codon models, intracodon recombination, and longitudinal sampling.

View Article and Find Full Text PDF

The recent advent of high-throughput sequencing and genotyping technologies makes it possible to produce, easily and cost effectively, large amounts of detailed data on the genotype composition of populations. Detecting locus-specific effects may help identify those genes that have been, or are currently, targeted by natural selection. How best to identify these selected regions, loci, or single nucleotides remains a challenging issue.

View Article and Find Full Text PDF

With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus.

View Article and Find Full Text PDF

The choice of summary statistics is a crucial step in approximate Bayesian computation (ABC). Since statistics are often not sufficient, this choice involves a trade-off between loss of information and reduction of dimensionality. The latter may increase the efficiency of ABC.

View Article and Find Full Text PDF

We developed a spatially explicit model of a bioinvasion and used an approximate Bayesian computation (ABC) framework to make various inferences from a combination of genetic (microsatellite genotypes), historical (first observation dates) and geographical (spatial coordinates of introduction and sampled sites) information. Our method aims to discriminate between alternative introduction scenarios and to estimate posterior densities of demographically relevant parameters of the invasive process. The performance of our landscape-ABC method is assessed using simulated data sets differing in their information content (genetic and/or historical data).

View Article and Find Full Text PDF

Motivation: Dominant markers (DArTs and AFLPs) are commonly used for genetic analysis in the fields of evolutionary genetics, ecology and conservation of genetic resources. The recent prominence of these markers has coincided with renewed interest in detecting the effects of local selection and adaptation at the level of the genome.

Results: We present Mcheza, an application for detecting loci under selection based on a well-evaluated F(ST)-outlier method.

View Article and Find Full Text PDF