We describe the application of structured imaging with a single-pixel camera to imaging through fog. We demonstrate the use of a high-pass filter on the detected bucket signals to suppress the effects of temporal variations of fog density and enable an effective reconstruction of the image. A quantitative analysis and comparison of several high-pass filters are demonstrated for the application.
View Article and Find Full Text PDFQuantum key distribution (QKD) can be used to produce a cryptographic key whose security is guaranteed by quantum mechanics. The range of fiber-based QKD links is limited, by loss, to a few hundred kilometers, and cannot be used between mobile platforms. Free space QKD can, in principle, overcome these limitations.
View Article and Find Full Text PDFThe realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.
View Article and Find Full Text PDFOpt Express
February 2010
We use Faraday spectroscopy of atoms confined to crossed hollow beam tweezers to map magnetic fields over 3 millimeters with 200 micron resolution in a single trap loading cycle. The hollow beams are formed using spatial light modulation, and the trap location is scanned using acousto-optic deflectors. We demonstrate the technique by mapping a linear quadrupole magnetic field with 10 nT sensitivity.
View Article and Find Full Text PDFWe demonstrate excitation of the azimuthally-polarized TE(01) cylindrical waveguide mode in hollow glass and metal waveguides with 780 nm light. Experimentally, we demonstrate formation of the vectorial vortex beams, and measure attenuation lengths of the TE(01) mode in hollow optical fibers with diameters of 50-100 microns. By silver-coating the inner walls of the dielectric fibers, we demonstrate a approximately 200% increase in the attenuation length.
View Article and Find Full Text PDFWe demonstrate a technique for generating azimuthally and radially polarized beams using a nematic liquid crystal spatial light modulator and a pi phase step. The technique is similar in concept to prior techniques that interfere TEM(01) and TEM(10) laser modes, but the presented technique removes the requirement of interferometric stability. We calculate an overlap integral of >0.
View Article and Find Full Text PDFWe have studied velocity-selective resonances in the presence of a uniform magnetic field and shown how they can be used for rapid, single-shot assessment of the ground state magnetic sublevel spectrum in a cold atomic vapor. Cold atoms are released from a magneto-optical trap in the presence of a small bias magnetic field ( approximately 300 mG) and exposed to a laser field comprised of two phase-locked counterpropagating beams connecting the two ground state hyperfine manifolds. An image of the expanded cloud shows the velocity-selected resonances as distinct features, each corresponding to specific magnetic sublevel, in a direct, intuitive manner.
View Article and Find Full Text PDFThe spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposition state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for nondestructive measurement.
View Article and Find Full Text PDFWe demonstrate a technique for imaging magnetic fields using velocity-selective two-photon resonances in a cold atom cloud. Freely expanding (85)Rb atoms released from a magneto-optical trap are exposed to a brief (approximately 1 ms), off-resonant, retro-reflected laser pulse in a lin-perp-lin configuration. Two-photon resonance between magnetic sublevels occurs only for atoms in narrow velocity classes dependent on the magnetic field strength.
View Article and Find Full Text PDFWe investigate experimentally and numerically the propagation characteristics of laser beams formed by imparting an azimuthal phase lphi to a Gaussian beam, where l is an integer. We find that when high-l beams of a finite extent are focused through a lens, the beams achieve peak intensity and are most sharply defined before and after the focal plane. Additionally, in these regions of highest intensity the effect of aberrations on the beam quality is greatly reduced, which we also demonstrate experimentally and numerically.
View Article and Find Full Text PDFStimulated Brillouin scattering was investigated for the first time in As(2)S(3) single-mode fibers, and also in As(2)Se(3). The propagation loss and numerical aperture of the fibers at 1.56 mum, along with the threshold intensity for the stimulated Brillouin scattering process were measured.
View Article and Find Full Text PDFWe carry out an analysis of an earlier proposed "channelization" architecture for wideband slow light propagation and pulse delays in atomic vapors using electromagnetically induced transparency (EIT). In the channelization architecture, a wideband input signal pulse is spatially dispersed in the transverse dimension, sent through an EIT medium consisting of an initially spin-polarized atomic vapor illuminated by a monochromatic, co-propagating pump laser, then spatially recombined. An inhomogenous magnetic field is used to Zeeman shift the atomic vapor into two-photon (Raman) resonance with the signal-pump transitions at all locations.
View Article and Find Full Text PDFWe demonstrate the generation of hollow laser beams by using a binary spatial light modulator and compare the results with those for a continuous modulator. The binary phase modulator produces beams that have continuous, azimuthally varying phase profiles and can be dynamically changed with kilohertz refresh rates. The intensity and phase profiles are recorded through the focus of an imaging lens and are compared with scalar diffraction theory.
View Article and Find Full Text PDF