Publications by authors named "Mark Bartlam"

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF

Human activities have caused an imbalance in the input nitrogen and phosphorus (N/P) in the biosphere. The imbalance of N/P is one of the characteristics of water eutrophication, which is the fundamental factor responsible for the blooms. The effects of the N/P imbalance on diatom and phycospheric bacteria in blooms are poorly understood.

View Article and Find Full Text PDF

Salinity is a critical environmental factor in marine ecosystems and has complex and wide-ranging biological effects. However, the effects of changing salinity on diversity and ecological functions of high nucleic acid (HNA) and low nucleic acid (LNA) bacteria are not well understood. In this study, we used 16S rRNA sequencing and metagenomic sequencing analysis to reveal the response of HNA and LNA bacterial communities and their ecological functions to salinity, which was decreased from 26 ‰ to 16 ‰.

View Article and Find Full Text PDF

In recent years, micro/nanoplastics have garnered widespread attention due to their ecological risks. In this study, we investigated the effects of polystyrene nanoparticles (PS-NPs) of different sizes on the growth and biofilm formation of Pseudomonas aeruginosa PAO1. The results demonstrated that exposure to certain concentrations of PS-NPs significantly promoted bacterial biofilm formation.

View Article and Find Full Text PDF

IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å.

View Article and Find Full Text PDF

Planktonic bacteria can be grouped into 'high nucleic acid content (HNA) bacteria' and 'low nucleic acid content (LNA) bacteria.' Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode.

View Article and Find Full Text PDF

In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation.

View Article and Find Full Text PDF

With changes in global climate, blooms are becoming more frequent and difficult to control. Therefore, the selection of algal suppressor agents with effective inhibition and environmental safety is of paramount importance. One of the main treatment strategies is to inhibit the release of harmful algal toxins.

View Article and Find Full Text PDF

Klebsiella pneumoniae, a facultative anaerobe, relies on acquiring molybdenum to sustain growth in anaerobic conditions, a crucial factor for the pathogen to establish infections within host environments. Molybdenum plays a critical role in pathogenesis as it forms an essential component of cofactors for molybdoenzymes. K.

View Article and Find Full Text PDF

Iron acquisition is an essential process of cell physiology for biological systems. In Klebsiella pneumoniae, the siderophore and ferric-acquisition ABC (ATP-Binding-Cassette) transporter KfuABC is utilized for iron uptake. Initial recognition of the various ferric sources in periplasm and transportation across the cytoplasmic membrane is performed by the substrate-binding protein (SBP) KfuA.

View Article and Find Full Text PDF
Article Synopsis
  • Phycospheric bacteria are vital for microalgae survival, with potential uses in managing harmful algal blooms yet to be confirmed.
  • Research identified two groups of phycospheric bacteria in Cyclotella sp.: high nucleic acid (HNA) and low nucleic acid (LNA), showing differences in diversity and ecological functions based on 16S rRNA and metagenomic sequencing.
  • The study found that restoring phycospheric bacterioplankton enhances microalgae growth and strengthens their resilience, suggesting that disrupting these bacteria could limit microalgae proliferation.
View Article and Find Full Text PDF

Studies of high nucleic acid-content (HNA) and low nucleic acid-content (LNA) bacterial communities are updating our view of their distributions and taxonomic composition. However, there are still large gaps in our knowledge of the composition, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities. Here, using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities in the samples collected in summer and winter in Chinese coastal seas.

View Article and Find Full Text PDF

We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA).

View Article and Find Full Text PDF

Chronic pulmonary infections in those living with cystic fibrosis or chronic obstructive pulmonary disease are promoted by production of alginate by the opportunistic pathogen Pseudomonas aeruginosa. Alginate biosynthesis enzymes in P. aeruginosa are regulated by the extracytoplasmic function alternative sigma factor σ either by mutation in mucA or in response to envelope stress.

View Article and Find Full Text PDF

The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is extensively used, stable, and difficult to degrade in the environment. The existence of BDE-47 could pose a certain risk to the environment and human health. However, the biotransformation mechanisms of BDE-47 by microorganisms remain unclear.

View Article and Find Full Text PDF

Low nucleic acid content (LNA) bacteria are ubiquitous and estimated to constitute 20%-90% of the total bacterial community in marine and freshwater environment. LNA bacteria with unique physiological characteristics, including small cell size and small genomes, can pass through 0.45-μm filtration.

View Article and Find Full Text PDF

Fuculose phosphate aldolases play an important role in glycolysis and gluconeogenesis pathways. L-fuculose 1-phosphate aldolase catalyzes the reversible cleavage of L-fuculose 1-phosphate to DHAP and L-lactaldehyde. Class II aldolases found in bacteria are linked to pathogenesis of human pathogens, and have potential applications in the biosynthesis of carbohydrates and other chiral compounds.

View Article and Find Full Text PDF

The plastisphere is viewed as a reservoir for the antibiotic resistome in water environments and may pose health concerns. However, the expression profiles of the resistome in the plastisphere are largely unknown. Here, we profiled the occurrence, abundance, and transcriptional level of antibiotic resistance genes (ARGs), plasmid associated ARGs, microbial composition and ARG bacterial hosts in the plastisphere and urban river water using 16S rRNA gene sequencing, metagenomic sequencing, and metatranscriptomic sequencing methods.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic pathogen that mostly affects those with weakened immune systems. Urease is a vital enzyme that can hydrolyze urea to ammonia and carbon dioxide as a source of nitrogen for growth. Urease is also a K.

View Article and Find Full Text PDF

Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4.

View Article and Find Full Text PDF

Oligoribonuclease (Orn), a member of the DEDDh superfamily, can hydrolyse 2-5 nt nanoRNAs to mononucleotides. It is involved in maintaining the intracellular levels of RNA, c-di-GMP signalling and transcription initiation in many bacterial species. Here, the crystal structure of Orn from Vibrio cholerae O1 El Tor (VcOrn) is reported at a resolution of 1.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa can utilize polyamines (including putrescine, cadaverine, 4-aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified in P. aeruginosa, but little is known about its structure and function.

View Article and Find Full Text PDF

Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation-putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA).

View Article and Find Full Text PDF

The Kemp elimination reaction, involving the ring-opening of benzoxazole and its derivatives under the action of natural enzymes or chemical catalysts, has been of interest to researchers since its discovery. Because this reaction does not exist in all currently known metabolic pathways, the computational design of Kemp eliminases has provided valuable insights into principles of enzymatic catalysis. However, it was discovered that the naturally occurring promiscuous enzymes ydbC, xapA and ketosteroid isomerase also can catalyze Kemp elimination.

View Article and Find Full Text PDF