Trends Neurosci
August 2005
Botulinum neurotoxins are the most potent toxins designed by nature. They are produced by Clostridium bacteria to cause long-lasting paralysis and death. However, in the past century one member of the botulinum family--botulinum neurotoxin type A--has been put to good use, and is now widely employed in clinical neurology and, even more often, in beauty clinics.
View Article and Find Full Text PDFSNAP-25 (25 kDa synaptosome-associated protein) is found in cells that release neurotransmitters and hormones, and plays a central role in the fusion of secretory vesicles with the plasma membrane. SNAP-25 has been shown to interact specifically with syntaxin 1, a 35 kDa membrane protein, to mediate the fusion process. Here, we investigated whether other known syntaxin isoforms found at the plasma membrane can serve as binding partners for SNAP-25 in vivo.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25.
View Article and Find Full Text PDFTransforming growth factor beta2 (TGF-beta2), a prototypic member of a large superfamily of multifunctional cytokines, is expressed by neurons and glial cells. Its subcellular compartmentalization and release from neurons, however, are largely unknown. Here we show that TGF-beta2 colocalizes with the trans-Golgi network marker TGN38 and a marker molecule for secretory granules, chromogranin B (CgB), in PC12 cells.
View Article and Find Full Text PDFIn epithelial cells, soluble cargo proteins destined for basolateral or apical secretion are packaged into distinct trans-Golgi network-derived transport carriers. Similar carriers, termed basolateral- and apical-like, have been observed in nonepithelial cells using ectopically expressed membrane marker proteins. Whether these cells are capable of selectively packaging secretory proteins into distinct carriers is still an open question.
View Article and Find Full Text PDF