Publications by authors named "Mark B Shiflett"

To meet the growing demand for sustainable aquaculture, plant proteins are being explored as alternative sources in fish diets. However, some plant proteins can have adverse health effects on fish, prompting research into functional feed ingredients to mitigate these issues. This study investigated pistachio shell powder (PSP), rich in antioxidants, as a functional feed ingredient for rainbow trout ().

View Article and Find Full Text PDF

Hydrofluorocarbons are a class of fluorinated molecules used extensively in residential and industrial refrigeration systems. This study examines the potential of using adsorption processes with the silicalite-1 zeolite to separate a mixture of difluoromethane (CH2F2, HFC-32) and pentafluoroethane (CF3CF2H, HFC-125) at various concentrations. Pure adsorption data were measured using a XEMIS gravimetric microbalance, whereas binary data were determined using the Integral Mass Balance method.

View Article and Find Full Text PDF

This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration.

View Article and Find Full Text PDF

The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health.

View Article and Find Full Text PDF

Hydrofluorocarbons (HFCs) have been used extensively as refrigerants over the past four decades; however, HFCs are currently being phased out due to large global warming potentials. As the next generation of hydrofluoroolefin refrigerants are phased in, action must be taken to responsibly and sustainably deal with the HFCs currently in circulation. Ideally, unused HFCs can be reclaimed and recycled; however, many HFCs in circulation are azeotropic or near-azeotropic mixtures and must be separated before recycling.

View Article and Find Full Text PDF

Worldwide use of hydrofluorocarbons (HFCs) is currently being regulated and phased out because of high global warming potentials (GWPs). Separation techniques for recycling refrigerants are needed so that HFCs can be dealt with responsibly. Many HFCs currently in use are azeotropic or near-azeotropic refrigerant blends and must be separated so that the components can be recycled and repurposed effectively.

View Article and Find Full Text PDF

Approximately half of all vaccines produced annually are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions needed to maintain the structure. Thus, most vaccines require a temperature-controlled supply chain to minimize waste. A more sustainable technology was developed via the adsorption of invasion plasmid antigen D (IpaD) onto mesoporous silica, improving the thermal stability of this protein-based therapeutic.

View Article and Find Full Text PDF

Introduction: It is estimated that 50% of vaccines produced annually are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions that maintain this structure. Since 90% of vaccines require a temperature-controlled supply chain, it is necessary to create a cold chain system to minimize vaccine waste. We have developed a more sustainable technology via the adsorption of Invasion Plasmid Antigen D (IpaD) onto mesoporous silica gels, improving the thermal stability of protein-based therapeutics.

View Article and Find Full Text PDF

Molecular level information about thermodynamic variations (enthalpy, entropy, and free energy) of a gas molecule as it crosses a gas-liquid interface is strongly lacking from an experimental perspective under equilibrium conditions. Herein, we perform in situ measurements of water interacting with the ionic liquid (IL) 1-butyl-3-methylimidazolium acetate, [Cmim][Ace], using ambient pressure X-ray photoelectron spectroscopy in order to assess the interfacial uptake of water quantitatively as a function of temperature, pressure, and water mole fraction ( x). The surface spectroscopy results are compared to existing bulk water absorption experiments, showing that the amount of water in the interfacial region is consistently greater than that in the bulk.

View Article and Find Full Text PDF

The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [CCim]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature. Molecular simulations predicted that the addition of water to the [CCim][TFSI]:[CCim][OAc] and [CCim][TFSI]:[CCim][Cl] mixtures would induce a liquid-liquid phase separation and that water addition to the [CCim][OAc]:[CCim][Cl] mixture would not produce a phase separation. The effect of water on the phase behavior of the IL mixtures was verified experimentally, and the IL and water concentrations were determined in each phase.

View Article and Find Full Text PDF

The critical role of solvation forces in dispersing and stabilizing nanoparticles and colloids in 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4] is demonstrated. Stable silica nanoparticle suspensions over 60 wt % solids are achieved by particle surface chemical functionalization with a fluorinated alcohol. A combination of techniques including rheology, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle neutron scattering (SANS) are employed to determine the mechanism of colloidal stability.

View Article and Find Full Text PDF

Carbon dioxide solubility (vapor-liquid equilibria: VLE) in an ionic liquid, 1-ethyl-3-ethylimidazolium acetate ([eeim][Ac]) was measured using a gravimetric microbalance at four isotherms (about 283, 298, 323, and 348 K) up to about 2 MPa. An equation-of-state (EOS) model was used to analyze the VLE data and has predicted vapor-liquid-liquid equilibria (VLLE: or liquid-liquid separations) in CO(2)-rich solutions. The VLLE prediction was confirmed experimentally using a volumetric method and likely the liquid-liquid equilibria will intersect with the solid-liquid equilibria such that no lower critical solution temperature can exist and the binary system may be classified as Type III phase behavior.

View Article and Find Full Text PDF

We have developed a ternary equation of state (EOS) model for the N(2)O/CO(2)/1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) system in order to understand separation of these gases using room-temperature ionic liquids (RTILs). The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical interaction parameters for each binary system. The interaction parameters have been determined using our measured VLE (vapor-liquid equilibrium) data for N(2)O/[bmim][BF(4)] and CO(2)/[bmim][BF(4)] and literature data for N(2)O/CO(2).

View Article and Find Full Text PDF

Gaseous solubilities of carbon dioxide (CO2) in 18 room-temperature ionic liquids (RTILs) have been measured at an isothermal condition (about 298 K) using a gravimetric microbalance. The observed pressure-temperature-composition (PTx) data have been analyzed by use of an equation-of-state (EOS) model, which has been successfully applied for our previous works. Henry's law constants have been obtained from the observed (PTx) data directly and/or from the EOS correlation.

View Article and Find Full Text PDF

Experimental results for the solubility of tetrafluoromethane (CF4, R14) in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) are presented for temperatures between 293.3 and 413.3 K, at pressures (gas molalities) up to 9.

View Article and Find Full Text PDF

We have studied temperature dependent IR spectra of the C-H stretching modes of the imidazolium ring in [bmim][PF(6)], [bmim][Tf(2)N], [emim][Tf(2)N], [hmim][Tf(2)N], and [bmim][BF(4)]. Temperatures in this study are from 278 to 348 K at an interval of 10 K. Spectra of the C-H stretching modes have been deconvoluted using our previous computer program of the Voigt-lineshape function.

View Article and Find Full Text PDF

Solubility measurements of carbon dioxide in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide have been performed with a gravimetric microbalance at temperatures of about 282, 297, 323, and 348 K and pressures up to about 2 MPa. Two different sources for the ionic liquid are examined in this work: an ultrapure sample from NIST (the IUPAC task force sample) and a commercially available sample. Both samples show nearly identical solubility behaviors, being undistinguishable within experimental uncertainties.

View Article and Find Full Text PDF

In this article, we investigate vapor-liquid-liquid equilibria (VLLE) of binary systems using a simple volumetric method. Being different from the usual cloud-point method for the determination of liquid-liquid separation boundaries, the present volumetric method is able to determine the direct VLLE properties, such as equilibrium compositions, as well as molar volumes of the two liquid phases, by measuring only weights and volumes of liquid samples. The theory behind this method is described, and detailed error analyses for our simple apparatus are discussed by using well-established systems in the literature: water + 2-butanol and 1-butanol + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]).

View Article and Find Full Text PDF