Publications by authors named "Mark Aronica"

Background: Mepolizumab is a therapy for severe asthma. We have little knowledge of the characteristics of people in the US that discontinue mepolizumab in clinical care.

Objective: To investigate the real-world efficacy and time to clinical discontinuation of mepolizumab, we evaluated individuals with asthma started on mepolizumab at the Cleveland Clinic.

View Article and Find Full Text PDF

Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden.

View Article and Find Full Text PDF

Asthma physiology affects respiratory function and inflammation, factors that may contribute to elevated resting energy expenditure (REE) and altered body composition. We hypothesized that asthma would present with elevated REE compared to weight-matched healthy controls. Adults with asthma ( = 41) and healthy controls ( = 20) underwent indirect calorimetry to measure REE, dual-energy X-ray absorptiometry (DEXA) to measure body composition, and 3-day diet records.

View Article and Find Full Text PDF

There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13.

View Article and Find Full Text PDF

IL-17A is a critical proinflammatory cytokine for the pathogenesis of asthma including neutrophilic pulmonary inflammation and airway hyperresponsiveness. In this study, by cell type-specific deletion of IL-17R and adaptor Act1, we demonstrated that IL-17R/Act1 exerts a direct impact on the contraction of airway smooth muscle cells (ASMCs). Mechanistically, IL-17A induced the recruitment of Rab35 (a small monomeric GTPase) and DennD1C (guanine nucleotide exchange factor [GEF]) to the IL-17R/Act1 complex in ASMCs, resulting in activation of Rab35.

View Article and Find Full Text PDF

Foxp3+ CD4 Tregs are central regulators of inflammation, including allergic inflammation in the lung. There is increasing evidence that inflammatory factors undermine adequate Treg functions and homeostasis, resulting in prolonged and exacerbated inflammation. Therefore, identifying the factors is of the utmost important.

View Article and Find Full Text PDF

Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR).

View Article and Find Full Text PDF

Asthma is a chronic inflammatory disease that is known to cause changes in the extracellular matrix, including changes in hyaluronan (HA) deposition. However, little is known about the factors that modulate its deposition or the potential consequences. Asthmatics with high levels of exhaled nitric oxide (NO) are characterized by greater airway reactivity and greater evidence of airway inflammation.

View Article and Find Full Text PDF

Protease-activated receptor 2 (PAR-2), an airway epithelial pattern recognition receptor (PRR), participates in the genesis of house dust mite-induced (HDM-induced) asthma. Here, we hypothesized that lung endothelial cells and proangiogenic hematopoietic progenitor cells (PACs) that express high levels of PAR-2 contribute to the initiation of atopic asthma. HDM extract (HDME) protease allergens were found deep in the airway mucosa and breaching the endothelial barrier.

View Article and Find Full Text PDF

Background: Aspirin desensitization has been associated with benefit in management of aspirin-exacerbated respiratory disease (AERD). An intervention that would encourage aspirin desensitization to be performed more frequently has substantial potential for improving outcomes and quality of life in patients with AERD.

Objective: We investigated whether omalizumab administration would be associated with attenuation of aspirin-provoked bronchospasm in patients with AERD undergoing aspirin desensitization.

View Article and Find Full Text PDF

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine.

View Article and Find Full Text PDF

Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix.

View Article and Find Full Text PDF

Understanding functions of Foxp3 regulatory T cells (Tregs) during allergic airway inflammation remains incomplete. In this study, we report that, during cockroach Ag-induced allergic airway inflammation, Foxp3 Tregs are rapidly mobilized into the inflamed lung tissues. However, the level of Treg accumulation in the lung was different depending on the type of inflammation.

View Article and Find Full Text PDF

Cyanidin, a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, including asthma, diabetes, atherosclerosis, and cancer, through its anti-inflammatory effects. We investigated the molecular basis of cyanidin action. Through a structure-based search for small molecules that inhibit signaling by the proinflammatory cytokine interleukin-17A (IL-17A), we found that cyanidin specifically recognizes an IL-17A binding site in the IL-17A receptor subunit (IL-17RA) and inhibits the IL-17A/IL-17RA interaction.

View Article and Find Full Text PDF

The biochemical mechanisms through which eosinophils contribute to asthma pathogenesis are unclear. Here we show eosinophil peroxidase (EPO), an abundant granule protein released by activated eosinophils, contributes to characteristic asthma-related phenotypes through oxidative posttranslational modification (PTM) of proteins in asthmatic airways through a process called carbamylation. Using a combination of studies we now show EPO uses plasma levels of the pseudohalide thiocyanate (SCN) as substrate to catalyze protein carbamylation, as monitored by PTM of protein lysine residues into N-carbamyllysine (homocitrulline), and contributes to the pathophysiological sequelae of eosinophil activation.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is an important contributor to the asthmatic phenotype. Recent studies investigating airway inflammation have demonstrated an association between hyaluronan (HA) accumulation and inflammatory cell infiltration of the airways. The ECM proteoglycan versican interacts with HA and is important in the recruitment and activation of leukocytes during inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • Asthma is characterized by airway inflammation and hyperresponsiveness, leading to significant health issues globally.
  • Activating the enzyme soluble guanylate cyclase (sGC) with agents like nitric oxide and specific pharmacologic agonists can induce bronchodilation, even in severe asthma cases.
  • Chronic exposure to high levels of nitric oxide can damage sGC in asthmatic lungs, but pharmacologic sGC agonists can still effectively promote bronchodilation despite this impairment.
View Article and Find Full Text PDF

In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis.

View Article and Find Full Text PDF

Hyaluronan (HA) is a large (>1500 kDa) polysaccharide of the extracellular matrix that has been linked to severity and inflammation in asthma. During inflammation, HA becomes covalently modified with heavy chains (HC-HA) from inter-α-inhibitor (IαI), which functions to increase its avidity for leukocytes. Our murine model of allergic pulmonary inflammation suggested that HC-HA may contribute to inflammation, adversely effecting lower airway remodeling and asthma severity.

View Article and Find Full Text PDF

β2-adrenergic receptor (β2AR) agonists (β2-agonist) are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation) by phosphorylation through G-protein coupled receptor kinases (GRKs) which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors.

View Article and Find Full Text PDF

A 64-year-old female patient presented with a 16-year history of persistent dry cough that was undiagnosed after workups at several healthcare facilities. The patient denies wheezing, shortness of breath or sputum production. Previous workups include chest imaging, transthoracic echocardiogram (TTE), laryngoscopy, spirometry and bronchoscopy, all of which were unremarkable.

View Article and Find Full Text PDF

IL-25 is a member of the IL-17 family of cytokines that promotes Th2 cell-mediated inflammatory responses. IL-25 signals through a heterodimeric receptor (IL-25R) composed of IL-17RA and IL-17RB, which recruits the adaptor molecule Act1 for downstream signaling. Although the role of IL-25 in potentiating type 2 inflammation is well characterized by its ability to activate the epithelium as well as T cells, the components of its signaling cascade remain largely unknown.

View Article and Find Full Text PDF

IL-25 promotes type 2 immunity by inducing the expression of Th2-associated cytokines. Although it is known that the IL-25R (IL-17RB) recruits the adaptor protein ACT1, the IL-25R signaling mechanism remains poorly understood. While screening for IL-25R components, we found that IL-25 responses were impaired in Traf4 (-/-) cells.

View Article and Find Full Text PDF

Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated.

View Article and Find Full Text PDF