Membrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step.
View Article and Find Full Text PDFMembrane remodeling drives a broad spectrum of cellular functions, and it is regulated through mechanical forces exerted on the membrane by cytoplasmic complexes. Here, we investigate how actin filaments dynamically tune their structure to control the active transfer of membranes between cellular compartments with distinct compositions and biophysical properties. Using intravital subcellular microscopy in live rodents we show that: a lattice composed of linear filaments stabilizes the granule membrane after fusion with the plasma membrane; and a network of branched filaments linked to the membranes by Ezrin, a regulator of membrane tension, initiates and drives to completion the integration step.
View Article and Find Full Text PDFMany actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the assembly of actin filaments is not known.
View Article and Find Full Text PDFThe actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly.
View Article and Find Full Text PDFThe tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.
View Article and Find Full Text PDFIn the past few decades, live cell microscopy techniques in combination with fluorescent tagging have provided a true explosion in our knowledge of the inner functioning of the cell. Dynamic phenomena can be observed inside living cells and the behavior of individual molecules participating in those events can be documented. However, our preference for simple or easy model systems such as cell culture, has come at a cost of chasing artifacts and missing out on understanding real biology as it happens in complex multicellular organisms.
View Article and Find Full Text PDF