Background: Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown.
View Article and Find Full Text PDFCBX7 is a polycomb group protein, and despite being implicated in many diseases, its role in cell proliferation has been controversial: some groups described its pro-proliferative properties, but others illustrated its inhibitory effects on cell growth. To date, the reason for the divergent observations remains unknown. While several isoforms for CBX7 were reported, no studies investigated whether the divergent roles of CBX7 could be due to distinct functions of CBX7 isoforms.
View Article and Find Full Text PDFEfficient synthesis of phosphorothioate RNA (PS-RNA) is demonstrated by using phenylacetyl disulfide (PADS) in a mixture of pyridine and acetonitrile (1:1, v/v) for 3 min. Sulfurization is achieved with >99.8% stepwise efficiency.
View Article and Find Full Text PDFEnvironmental risk assessment of genetically modified organisms requires determination of their fitness and invasiveness relative to conspecifics and other ecosystem members. Cultured growth hormone transgenic coho salmon (Oncorhynchus kisutch) have enhanced feeding capacity and growth, which can result in large enhancements in body size (>7-fold) relative to nontransgenic salmon, but in nature, the ability to compete for available food is a key factor determining survival fitness and invasiveness of a genotype. When transgenic and nontransgenic salmon were cohabitated and competed for different levels of food, transgenic salmon consistently outgrew nontransgenic fish and could affect the growth of nontransgenic cohorts except when food availability was high.
View Article and Find Full Text PDF