Background: In 2% to 4% of patients, coronavirus disease 2019 (COVID-19) chemosensory dysfunction (CSD) persists beyond 6 months, accounting for up to 4 million people in the United States. The predictors of persistence and recovery require further exploration.
Objective: We sought to define the predictors of recovery and assess the quality of CSD in registry subjects with self-reported persistent smell and taste dysfunction after COVID-19.
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment.
View Article and Find Full Text PDFNeuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death.
View Article and Find Full Text PDFPost-Acute Sequelae of COVID-19 (PASC) encompasses persistent neurological symptoms, including olfactory and autonomic dysfunction. Here, we report chronic neurological dysfunction in mice infected with a virulent mouse-adapted SARS-CoV-2 that does not infect the brain. Long after recovery from nasal infection, we observed loss of tyrosine hydroxylase (TH) expression in olfactory bulb glomeruli and neurotransmitter levels in the substantia nigra (SN) persisted.
View Article and Find Full Text PDFThe stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS.
View Article and Find Full Text PDFBackground: Olfactory dysfunction is one of the earliest signs of Alzheimer's disease (AD), highlighting its potential use as a biomarker for early detection. It has also been linked to progression from mild cognitive impairment (MCI) to dementia.
Objective: To study olfactory function and its associations with markers of AD brain pathology in non-demented mutation carriers of an autosomal dominant AD (ADAD) mutation and non-carrier family members.
Int Forum Allergy Rhinol
April 2022
Background: The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O).
View Article and Find Full Text PDFBackground: The mechanisms by which any upper respiratory virus, including SARS-CoV-2, impairs chemosensory function are not known. COVID-19 is frequently associated with olfactory dysfunction after viral infection, which provides a research opportunity to evaluate the natural course of this neurological finding. Clinical trials and prospective and histological studies of new-onset post-viral olfactory dysfunction have been limited by small sample sizes and a paucity of advanced neuroimaging data and neuropathological samples.
View Article and Find Full Text PDFTriggers of innate immune signaling in the CNS of patients with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD) remain elusive. We report the presence of cytoplasmic double-stranded RNA (cdsRNA), an established trigger of innate immunity, in ALS-FTD brains carrying intronic hexanucleotide expansions that included genomically encoded expansions of the GC repeat sequences. The presence of cdsRNA in human brains was coincident with cytoplasmic TAR DNA binding protein 43 (TDP-43) inclusions, a pathologic hallmark of ALS/FTD.
View Article and Find Full Text PDFIntroduction: Despite strong evidence linking amyloid beta (Aβ) to Alzheimer's disease, most clinical trials have shown no clinical efficacy for reasons that remain unclear. To understand why, we developed a quantitative systems pharmacology (QSP) model for seven therapeutics: aducanumab, crenezumab, solanezumab, bapineuzumab, elenbecestat, verubecestat, and semagacestat.
Methods: Ordinary differential equations were used to model the production, transport, and aggregation of Aβ; pharmacology of the drugs; and their impact on plaque.
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names.
View Article and Find Full Text PDFThe main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception.
View Article and Find Full Text PDFExpansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions.
View Article and Find Full Text PDFThe immortalized human ReNcell VM cell line represents a reproducible and easy-to-propagate cell culture system for studying the differentiation of neural progenitors. To better characterize the starting line and its subsequent differentiation, we assessed protein and phospho-protein levels and cell morphology over a 15-day period during which ReNcell progenitors differentiated into neurons, astrocytes and oligodendrocytes. Five of the resulting datasets measured protein levels or states of phosphorylation based on tandem-mass-tag (TMT) mass spectrometry and four datasets characterized cellular phenotypes using high-content microscopy.
View Article and Find Full Text PDFThe dose-limiting toxicity for vincristine is peripheral neuropathy which can be potentiated with concurrent usage of azole antifungals. The current retrospective study assessed the incidence of concurrent vincristine and azole antifungal usage to determine if it led to increased neurotoxicity for the Kaiser Northern California pediatric acute lymphoblastic leukemia (ALL) and Hodgkin lymphoma patient population. Data were obtained from the electronic medical record (2007 to 2014).
View Article and Find Full Text PDFJ Neuropsychiatry Clin Neurosci
September 2019
Activity-dependent synaptic plasticity plays a critical role in the refinement of circuitry during postnatal development and may be disrupted in conditions that cause intellectual disability, such as Down syndrome (DS). To test this hypothesis, visual cortical plasticity was assessed in Ts65Dn mice that harbor a chromosomal duplication syntenic to human chromosome 21q. We find that Ts65Dn mice demonstrate a defect in ocular dominance plasticity (ODP) following monocular deprivation.
View Article and Find Full Text PDFOlfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality.
View Article and Find Full Text PDFObjective: The objective of this study was to relate a novel test of identifying and recalling odor percepts to biomarkers of Alzheimer's disease (AD) in well-characterized elderly individuals, ranging from cognitively normal to demented.
Methods: One hundred eighty-three participants (cognitively normal: n = 70; subjective cognitive concerns: n = 74; mild cognitive impairment [MCI]: n = 29, AD dementia: n = 10) were administered novel olfactory tests: the Odor Percept IDentification (OPID) and the Percepts of Odor Episodic Memory (POEM) tests. Univariate cross-sectional analyses of performance across diagnoses; logistic regression modeling, including covariates of age, sex, education, APOE genotype, and neuropsychological test scores; and linear mixed modeling of longitudinal cognitive scores were performed.
Objective: Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease-modifying therapies.
Methods: We acquired tau positron emission tomography (PET) using (18)F T807 (AV1451), and amyloid-β PET using (11)C Pittsburgh compound B (PiB) in older clinically normal individuals, and symptomatic patients with mild cognitive impairment or mild AD dementia.
Results: We found abnormally high cortical (18)F T807 binding in patients with mild cognitive impairment and AD dementia compared to clinically normal controls.