Publications by authors named "Mark Ahmad"

The aromatic polymer lignin represents a possible renewable source of aromatic chemicals, if biocatalytic routes for lignin breakdown can be developed. The availability of a genome sequence for Rhodococcus jostii RHA1, a bacterium that breaks down lignin, has allowed the application of a targeted pathway engineering strategy to lignin breakdown to produce vanillin, a valuable food/flavor chemical. A gene deletion strain of R.

View Article and Find Full Text PDF

Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes.

View Article and Find Full Text PDF

Rhodococcus jostii RHA1, a polychlorinated biphenyl-degrading soil bacterium whose genome has been sequenced, shows lignin degrading activity in two recently developed spectrophotometric assays. Bioinformatic analysis reveals two unannotated peroxidase genes present in the genome of R. jostii RHA1 with sequence similarity to open reading frames in other lignin-degrading microbes.

View Article and Find Full Text PDF

The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved.

View Article and Find Full Text PDF

Two spectrophotometric assays have been developed to monitor breakdown of the lignin component of plant lignocellulose: a continuous fluorescent assay involving fluorescently modified lignin, and a UV-vis assay involving chemically nitrated lignin. These assays have been used to analyse lignin degradation activity in bacterial and fungal lignin degraders, and to identify additional soil bacteria that show activity for lignin degradation. Two soil bacteria known to act as aromatic degraders, Pseudomonas putida and Rhodococcus sp.

View Article and Find Full Text PDF

The extradiol and intradiol catechol dioxygenase reaction mechanisms proceed via a common proximal hydroperoxide intermediate, which is processed via different Criegee 1,2-rearrangements. An R215W mutant of extradiol dioxygenase MhpB, able to produce a mixture of extradiol and intradiol cleavage products, was analysed at pH 5.2-8.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7v2lsv8fa6omnqubgqefsd63pj7ng6hh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once