Chaos Solitons Fractals
May 2013
Circadian clocks are found in a wide variety of organisms from cyanobacteria to mammals. Many believe that the circadian clock system evolved as an adaption to the daily cycles in light and temperature driven by the rotation of the earth. Studies on the cyanobacterium, PCC 7942, have confirmed that the circadian clock in resonance with environmental cycles confers an adaptive advantage to cyanobacterial strains with different clock properties when grown in competition under light-dark cycles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2007
The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator.
View Article and Find Full Text PDFJ Biol Rhythms
December 2006
Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a clock system that appears to be similar to those of eukaryotes in many ways. On the other hand, the KaiABC-based core cyanobacterial clockwork is clearly different from the transcription-translation feedback loop model of eukaryotic clocks in that the cyanobacterial clock system regulates gene expression patterns globally, and specific clock gene promoters are not essential in mediating the circadian feedback loop. A novel model, the oscilloid model, proposes that the KaiABC oscillator ultimately mediates rhythmic changes in the status of the cyanobacterial chromosome, and these topological changes underlie the global rhythms of transcription.
View Article and Find Full Text PDFCircadian clocks are thought to enhance the fitness of organisms by improving their ability to adapt to extrinsic influences, specifically daily changes in environmental factors such as light, temperature, and humidity. Some investigators have proposed that circadian clocks provide an additional "intrinsic adaptive value," that is, the circadian clock that regulates the timing of internal events has evolved to be such an integral part of the temporal regulation that it is useful in all conditions, even in constant environments. There have been practically no rigorous tests of either of these propositions.
View Article and Find Full Text PDF