Publications by authors named "Mark A W Hornsby"

Animals use cues from their environment to orient in space and to navigate their surroundings. Geometry is a cue whose informational content may originate from the metric properties of a given environment, and its use has been demonstrated in the laboratory in nearly every species of animal tested. However, it is not clear whether geometric information, used by animals typically tested in small, rectangular boxes, is directly relevant to animals in their natural environment.

View Article and Find Full Text PDF

In the laboratory, many species orient themselves using the geometric properties of an enclosure or array and geometric information is often preferred over visual cues. Whether animals use geometric cues when relocating rewarded locations in the wild, however, has rarely been investigated. We presented free-living rufous hummingbirds with a rectangular array of four artificial flowers to investigate learning of rewarded locations using geometric cues.

View Article and Find Full Text PDF

Non-mammalian vertebrates and invertebrates use extraretinal photoreceptors to detect light and perform diverse non-image-forming functions. Compared to well-studied visual systems, the effect of ambient light conditions on photosensory systems of extraretinal photoreceptors is poorly understood. Chromatophores are photosensitive dermal pigment cells that play an important role in the formation of body color patterns to fit the surrounding environment.

View Article and Find Full Text PDF

Color vision is most beneficial when the visual system is color constant and can correct the excitations of photoreceptors for differences in environmental irradiance. A phenomenon related to color constancy is color induction, where the color of an object shifts away from the color of its surroundings. These two phenomena depend on chromatic spatial integration, which was suggested to originate at the feedback synapse from horizontal cells (HC) to cones.

View Article and Find Full Text PDF

Signal reception and production form the basis of animal visual communication, and are largely constrained by environmental light. However, the role of environmental light in producing variation in either signal reception or production has not been fully investigated. To chart the effect of environmental light on visual sensitivity and body colouration throughout ontogeny, we measured spectral sensitivity, lens transmission and body pattern reflectance from juvenile and adult Nile tilapia held under two environmental light treatments.

View Article and Find Full Text PDF