Publications by authors named "Mark A Tapper"

The US Environmental Protection Agency (USEPA) is faced with long lists of chemicals that require hazard assessment. The present study is part of a larger effort to develop in vitro assays and quantitative structure-activity relationships applicable to untested chemicals on USEPA inventories through study of estrogen receptor (ER) binding and estrogen-mediated gene expression in fish. The present effort investigates metabolic activation of chemicals resulting in increased estrogenicity.

View Article and Find Full Text PDF

Perfluoroalkylated substances (PFAS) such as carboxylic acids, and sulfonic acids were manufactured in high quantities and are ubiquitous environmental contaminants. These chemicals persist in the environment and tend to bioaccumulate. In the current study, the estrogenic potential of a series of perfluoro carboxylic acids and select perfluoro sulfonic acids were assessed in an rainbow trout estrogen receptor (rtER) binding assay and an rtER dependent vitellogenin (Vtg) expression rainbow trout liver slice assay.

View Article and Find Full Text PDF

Limited availability of fish metabolic pathways for PFAS may lead to risk assessments with inherent uncertainties based only upon the parent chemical or the assumption that the biodegradation or mammalian metabolism map data will serve as an adequate surrogate. A rapid and transparent process, utilizing a recently created database of systematically collected information for fish, mammals, poultry, plant, earthworm, sediment, sludge, bacteria, and fungus using data evaluation tools in the previously described metabolism pathway software system MetaPath, is presented. The fish metabolism maps for 10 PFAS, heptadecafluorooctyl(tridecafluorohexyl)phosphinic acid (C6/C8 PFPiA), bis(perfluorooctyl)phosphinic acid (C8/C8 PFPiA), 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), -Ethylperfluorooctane-1-sulfonamide (Sulfuramid; N-EtFOSA), -Ethyl Perfluorooctane Sulfonamido Ethanol phosphate diester (SAmPAP), Perfluorooctanesulfonamide (FOSA), 8:2 Fluorotelomer phosphate diester (8:2 diPAP), 8:2 fluorotelomer alcohol (8:2 FTOH), 10:2 fluorotelomer alcohol (10:2 FTOH), and 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), were compared across multiple species and systems.

View Article and Find Full Text PDF

Feminization of male fish and the role of endocrine-active chemicals in this phenomenon has been an area of intense study for many years. Estrone (E1), a natural steroid, is found in aquatic environments sometimes at high concentrations relative to the estrogenic steroids 17β-estradiol (E2) and 17α-ethynylestradiol. However, E1 has been less thoroughly studied than E2 or 17α-ethynylestradiol due in part to a relatively lower potency in metabolically limited estrogen receptor (ER) binding/activation assays.

View Article and Find Full Text PDF

Thiacloprid (THI) is a widely used neonicotinoid insecticide where concerns have been raised regarding low absorption by crops, substantial distribution in surrounding areas, and potential adverse effects to terrestrial and aquatic organisms.Prior to this study, there was very limited information addressing the (precision-cut liver slices) metabolism of THI by fish species and the metabolic pathways regulating its potential for adverse effects.The and biotransformation pathway of THI is defined by the formation of three primary metabolites (TM1, TM2 and TM3) via separate paths differentiated by reductive decyanation, reductive dechlorination with hydration and dealkylation processes, respectively.

View Article and Find Full Text PDF

Providing an alternative to pyrethroids, organophosphates, and carbamates, the neonicotinoids are now the most widely used insecticides in the world. They are water soluble and relatively stable in soil and water which allows for run-off through surface waters and thus potentially impacting aquatic species and environments.While the mammalian metabolism of neonicotinoids has been studied extensively, there is a lack of understanding of their metabolism in fish species.

View Article and Find Full Text PDF

Cyclic phenones are chemicals of interest to the USEPA and international organizations due to their potential for endocrine disruption to aquatic and terrestrial species. The metabolic conversion of cyclic phenones by liver hepatocytes and the structure of main metabolites yielded have not been assessed in fish species. As part of a larger project, in this study we investigated the structure of metabolites produced in vitro by rainbow trout (rt) liver slices after exposure to the model cyclic phenones benzophenone (DPK), cyclobutyl phenyl ketone (CBP) and cyclohexyl phenyl ketone (CPK).

View Article and Find Full Text PDF

Introduction: Understanding biotransformation pathways in aquatic species is an integral part of ecological risk assessment with respect to the potential bioactivation of chemicals to more toxic metabolites. The long-range goal is to gain sufficient understanding of fish metabolic transformation reactions to be able to accurately predict fish xenobiotic metabolism. While some metabolism data exist, there are few fish exposure studies where metabolites have been identified and the metabolic pathways proposed.

View Article and Find Full Text PDF

1. Cyclic phenones are chemicals of interest to the USEPA due to their potential for endocrine disruption to aquatic and terrestrial species.2.

View Article and Find Full Text PDF

Phenones and hydroxy benzophenones are widely used as UV radiation filters, and in the manufacturing of insecticides and pharmaceuticals. Understanding the estrogenic potential these chemicals is of interest to the US Environmental Protection Agency and other international environmental organizations. The current study sequentially combined complementary rainbow trout estrogen receptor (rtER) binding and liver slice vitellogenin (Vtg) mRNA induction assays in the context of a defined ER-mediated adverse outcome pathway (AOP).

View Article and Find Full Text PDF

A representative group of multicyclic aromatic hydrocarbons (MAHC) which can be further classified as bridged-ring (bridged-MAHC) or fused-ring (fused-MAHC) were examined for their ability to interact with the estrogen receptor of rainbow trout (rtER) in a hepatic cytosolic estrogen receptor competitive binding assay (cyto rtERαβ) and the vitellogenin (Vtg) mRNA gene activation liver slice assay. All five fused-MAHCs; naphthalene (NAFT), fluorene (FE), Fluoranthene (FAT), pyrene (PY), and 9,10-dihydroanthracene (DAC) had no estrogenic activity in the in vitro assays used. Five of the eight bridged-MAHCs; triphenylethylene (3PE), o-terphenyl (OTP), triphenylmethane (TPM), 1,1-diphenylethylene (DPE), and cis-stilbene (CSB) were positive in the rtER-binding assay.

View Article and Find Full Text PDF

Ecological risk assessments are often limited in their ability to consider metabolic transformations for fish species due to a lack of data. When these types of evaluations are attempted they are often based on parent chemical only, or by assuming similarity to available mammalian metabolic pathways. The metabolism maps for five pesticides (fluazinam, halauxifen-methyl, kresoxim-methyl, mandestrobin, and tolclofos-methyl) were compared across three species.

View Article and Find Full Text PDF

The potential for chemicals to affect endocrine signaling is commonly evaluated via receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented from screening 94 chemicals from 54 chemical groups for estrogen receptor (ER) activation in a competitive rainbow trout ER (rtER) binding assay and a trout liver slice vitellogenin mRNA expression assay. Results from true competitive agonists and antagonists, and inactive chemicals with little or no indication of ER binding or gene activation were easily interpreted.

View Article and Find Full Text PDF

Twelve chemicals were tested for binding affinity to rainbow trout liver estrogen receptor (rbtER) and fathead minnow liver ER (fhmER). The chemicals included estradiol (E2), diethylstilbestrol (DES), ethinylestradiol (EE2), estrone (El), estriol, tamoxifen (TAM), genistein (GEN), p-nonylphenol (PNP), p-tert-octylphenol (PTOP), methoxychlor (MXC), testosterone, and methyltestosterone (MT). Relative binding affinity (RBA) was calculated for each chemical as a function of E2 binding to the receptor.

View Article and Find Full Text PDF

The cost of testing chemicals as reproductive toxicants precludes the possibility of evaluating large chemical inventories without a robust strategyfor prioritizing chemicals to test. The use of quantitative structure-activity relationships in early hazard identification is a cost-effective prioritization tool, but in the absence of systematic collection of interpretable test data upon which models are formulated, these techniques fall short of their intended use. An approach is presented for narrowing the focus of candidate ED chemicals using two in vitro assays: one optimized to measure the potential of chemicals to bind rainbow trout estrogen receptors (rtER), and a second to enhance interpretation of receptor binding data in a relevant biological system (i.

View Article and Find Full Text PDF