Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching.
View Article and Find Full Text PDFMethods Ecol Evol
March 2022
Automatically tracking the positions of multiple animals is often necessary for studying behaviours. This task involves multiple object tracking, a challenging problem in computer vision. Recent advances in machine learning applied to video analysis have been helpful for animal tracking.
View Article and Find Full Text PDFBetter understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase.
View Article and Find Full Text PDFInhibitory neurons play critical roles in regulating and shaping olfactory responses in vertebrates and invertebrates. In insects, these roles are performed by relatively few neurons, which can be interrogated efficiently, revealing fundamental principles of olfactory coding. Here, with electrophysiological recordings from the locust and a large-scale biophysical model, we analyzed the properties and functions of GGN, a unique giant GABAergic neuron that plays a central role in structuring olfactory codes in the locust mushroom body.
View Article and Find Full Text PDFAs information about the sensory environment passes between layers within the nervous system, the format of the information often changes. To examine how information format affects the capacity of neurons to represent stimuli, we measured the rate of information transmission in olfactory neurons in intact, awake locusts (Schistocerca americana) while pharmacologically manipulating patterns of correlated neuronal activity. Blocking the periodic inhibition underlying odor-elicited neural oscillatory synchronization increased information transmission rates.
View Article and Find Full Text PDF