Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses.
View Article and Find Full Text PDFBackground: The S. cerevisiae MAPKKK Ste11p, a homologue of mammalian MEKK1, regulates three MAPK cascades for mating, invasive growth and osmotic stress and provides functions that are additive with the cell wall integrity pathway. Cell wall integrity requires the FKS2 gene that encodes a stress-induced alternative subunit of beta-1, 3 glucan synthase that is the target of echinocandin 1,3- beta glucan synthase inhibitors.
View Article and Find Full Text PDFCell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis.
View Article and Find Full Text PDFA quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment.
View Article and Find Full Text PDFGreen fluorescent protein (GFP) has become an increasingly popular protein tag for determining protein localization and abundance. With the availability of GFP variants with altered fluorescence spectra, as well as GFP homologues from other organisms, multi-colour fluorescence with protein tags is now possible, as is measuring protein interactions using fluorescence resonance energy transfer (FRET). We have created a set of yeast tagging vectors containing codon-optimized variants of GFP, CFP (cyan), YFP (yellow), and Sapphire (a UV-excitable GFP).
View Article and Find Full Text PDF