We report the results of fabricating fiber array unit (FAU) connectors using a near IR laser welding process, locking fibers in proper position on planar glass substrates and forming strong glass-to-glass bonds, followed by final assembly using lower coefficient of thermal expansion (CTE) epoxies. A thin metal film deposited on the glass substrate provides the absorption required to attain interfacial temperatures suitable for glass-to-glass bonding. This method allows the elimination of dedicated expensive V-groove plates while still maintaining very good fiber placement accuracy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Oleophobic surfaces have been so far realized using complex microscale and nanoscale re-entrant geometries, where primary and secondary structures or overhang geometries are typically required. Here, we propose a new design to create them with noninteracting cavities. The suspension of liquid droplets relies on the mechanism of compression of air under the meniscus leading to stable composite oil-air-solid interfaces.
View Article and Find Full Text PDFIn order to allow the design of increasingly sensitive label-free biosensors, compensation of environmental fluctuations is emerging as the dominant hurdle. The system and technique presented here utilize a unique combination of microfluidics, optical instrumentation, and image processing to provide a reference signal for each label-free biomolecular binding assay. Moreover, this reference signal is generated from the same sensor used to detect the biomolecular binding events.
View Article and Find Full Text PDF