Publications by authors named "Mark A Preece"

Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand are known to develop abnormal spinal curvature late in seawater production. Its cause is presently unknown, but there is evidence to suggest a neuromuscular pathology. Using magnetic resonance imaging (MRI), we evaluated the relationship between soft tissue pathology and spinal curvature in farmed Chinook salmon.

View Article and Find Full Text PDF

Over the past 40 years New Zealand (NZ) aquaculture has grown into a significant primary industry. Tonnage is small on a global scale, but the industry has built an international reputation for the supply of high quality seafood to many overseas markets. Since the early 1990s the industry has recognized the potential gains from selective breeding and the challenge has been to develop programs that can overcome biological obstacles (such as larval rearing and mortality) and operate cost-effectively on a relatively small scale while still providing significant gains in multiple traits of economic value.

View Article and Find Full Text PDF

Variation of vertebral centra numbers is common in vertebrates. Likewise, the number of associated elements such as ribs and neural and haemal arches can vary and affect all regions of the vertebral column. In mammals, only the number of cervical vertebrae is invariable.

View Article and Find Full Text PDF

Vertebral column lordosis, kyphosis and scoliosis (LKS) can result in downgrading of farmed Chinook salmon Oncorhynchus tshawytscha in New Zealand. No cause of LKS has been identified. Radiography and histology were used to quantify LKS and perivertebral fibrosis in 27 fish with LKS visible at harvest and 30 visually normal fish from 3 New Zealand farms.

View Article and Find Full Text PDF

Background: Acute depletion of tyrosine using a tyrosine-free amino acid mixture offers a novel dietary approach to inhibit activated dopamine pathways in the brain. This study investigated the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a noninvasive means to detect effects of tyrosine depletion on dopamine function.

Methods: Changes in blood-oxgenation level dependent (BOLD) contrast induced by administration of the dopamine-releasing agent, amphetamine (3 mg/kg i.

View Article and Find Full Text PDF