Philos Trans R Soc Lond B Biol Sci
July 2024
Dispersal among local communities is fundamental to the metacommunity concept but is only important to the metacommunity structure if dispersal causes distortions of species abundances away from what local ecological conditions favour. We know from much previous work that dispersal can cause such abundance distortions. However, almost all previous theoretical studies have only considered one species alone or two interacting species (e.
View Article and Find Full Text PDFWe present a mechanistic model of coexistence among a mycorrhizal fungus and one or two plant species that compete for a single nutrient. Plant-fungal coexistence is more likely if the fungus is better at extracting the environmental nutrient than the plant and the fungus acquires carbon from the plant above a minimum rate. When they coexist, their interaction can shift from mutualistic to parasitic at high nutrient availability.
View Article and Find Full Text PDFEco-evolutionary feedbacks among multiple species occur when one species affects another species' evolution via its effects on the abundance and traits of a shared partner species. What happens if those two species enact opposing effects on their shared partner's population growth? Furthermore, what if those two kinds of interactions involve separate traits? For example, many plants produce distinct suites of traits that attract pollinators (mutualists) and deter herbivores (antagonists). Here, we develop a model to explore how pollinators and herbivores may influence each other's interactions with a shared plant species via evolutionary effects on the plant's nectar and toxin traits.
View Article and Find Full Text PDFAbstractSexual selection can be shaped by spatial variation in environmental features among populations. Differences in sexual selection among populations generated through the effects of the environment could be shaped via four paths: differences in mean absolute fitness, differences in the means or variances of phenotypes, or differences in the absolute fitness-trait function relationship. Because sexual selection occurs only during the adult life stage, most studies have focused on identifying environmental features that influence these metrics of fitness and trait distributions among adults.
View Article and Find Full Text PDFWhole-genome duplications (WGDs) have long been considered the causal mechanism underlying dramatic increases to morphological complexity due to the neo-functionalization of paralogs generated during these events. Nonetheless, an alternative hypothesis suggests that behind the retention of most paralogs is not neo-functionalization, but instead the degree of the inter-connectivity of the intended gene product, as well as the mode of the WGD itself. Here, we explore both the causes and consequences of WGD by examining the distribution, expression, and molecular evolution of microRNAs (miRNAs) in both gnathostome vertebrates as well as chelicerate arthropods.
View Article and Find Full Text PDFAbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers.
View Article and Find Full Text PDFThat species must differ ecologically is often viewed as a fundamental condition for their stable coexistence in biological communities. Yet, recent work has shown that ecologically equivalent species can coexist when reproductive interactions and sexual selection regulate population growth. Here, we review theoretical models and highlight empirical studies supporting a role for reproductive interactions in maintaining species diversity.
View Article and Find Full Text PDFThe neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs.
View Article and Find Full Text PDFThe risk of meiotic segregation errors increases dramatically during a woman's thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage.
View Article and Find Full Text PDFMuch of ecological theory presumes that natural selection should foster species coexistence by phenotypically differentiating competitors so that the stability of the community is increased, but whether this will actually occur is a question of the ecological dynamics of natural selection. I develop an evolutionary model of consumer-resource interactions based on MacArthur's and Tilman's classic works, including both resource and apparent competition, to explore what fosters or retards the differentiation of resources and their consumers. Analyses of this model predict that consumers will differentiate only on specific ranges of environmental gradients (e.
View Article and Find Full Text PDFFemales in many animal species must discriminate between conspecific and heterospecific males when choosing mates. Such mating preferences that discriminate against heterospecifics may inadvertently also affect the mating success of conspecific males, particularly those with more extreme phenotypes. From this expectation, we hypothesized that female mate choice should cause Enallagma females (Odonata: Coenagrionidae) to discriminate against conspecific males with more extreme phenotypes of the claspers males use to grasp females while mating - the main feature of species mate recognition in these species.
View Article and Find Full Text PDFExternal male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species-specific tactile cues has not been tested.
View Article and Find Full Text PDFNatural selection has both genetic and ecological dynamics. The fitnesses of individuals change with their ecological context, and so the form and strength of selective agents change with abiotic factors and the phenotypes and abundances of interacting species. I use standard models of consumer-resource interactions to explore the ecological dynamics of natural selection and how various trait types influence these dynamics and the resulting structure of a community of coevolving species.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2016
Reconstructing evolutionary patterns of species and populations provides a framework for asking questions about the impacts of climate change. Here we use a multilocus dataset to estimate gene trees under maximum likelihood and Bayesian models to obtain a robust estimate of relationships for a genus of North American damselflies, Enallagma. Using a relaxed molecular clock, we estimate the divergence times for this group.
View Article and Find Full Text PDFPredation risk has strong effects on organismal physiology that can cascade to impact ecosystem structure and function. Physiological processes in general are sensitive to temperature. Thus, the temperature at which predators and prey interact may shape physiological response to predation risk.
View Article and Find Full Text PDFDispersal is difficult to quantify and often treated as purely stochastic and extrinsically controlled. Consequently, there remains uncertainty about how individual traits mediate dispersal and its ecological effects. Addressing this uncertainty is crucial for distinguishing neutral versus non-neutral drivers of community assembly.
View Article and Find Full Text PDFBrachionus calyciflorus typically develops long, defensive spines only in response to a kairomone from the predatory rotifer, Asplanchna. However, in the absence of any environmental induction, females of some clones produce daughters with increasingly long spines as they age; late-born individuals can have posterolateral spines as long as those induced by Asplanchna: up to 50% or more of body length. Here, we construct a model using data from life-table and predator-prey experiments to assess how this maternal-age effect can influence the distribution of spine lengths in reproducing populations and provide defense against Asplanchna predation.
View Article and Find Full Text PDFPrevious models of diamond-shaped and intraguild predation community modules have represented the essence of the trade-off necessary for a top predator to prevent competitive exclusion among a set of resource-limited consumers. However, at most two consumers can coexist in these models. In this article, I show how intraspecific density dependence in the consumers can permit many more than two consumers to coexist in these community modules.
View Article and Find Full Text PDFIn this paper we present a de novo assembly of the transcriptome of the damselfly (Enallagma hageni) through the use of 454 pyrosequencing. E. hageni is a member of the suborder Zygoptera, in the order Odonata, and Odonata organisms form the basal lineage of the winged insects (Pterygota).
View Article and Find Full Text PDFThe importance of negative intraspecific density dependence to promoting species coexistence in a community is well accepted. However, such mechanisms are typically omitted from more explicit models of community dynamics. Here I analyze a variation of the Rosenzweig-MacArthur consumer-resource model that includes negative intraspecific density dependence for consumers to explore its effect on the coexistence of multiple consumers feeding on a single resource.
View Article and Find Full Text PDFIn stream organisms, the landscape affecting intraspecific genetic and phenotypic divergence is comprised of two fundamental components: the stream network and terrestrial matrix. These components are known to differentially influence genetic structure in stream species, but to our knowledge, no study has compared their effects on genetic and phenotypic divergence. We examined how the stream network and terrestrial matrix affect genetic and phenotypic divergence in two stream salamanders, Gyrinophilus porphyriticus and Eurycea bislineata, in the Hubbard Brook Watershed, New Hampshire, USA.
View Article and Find Full Text PDF1. Ecological differences among co-occurring taxa are often invoked as an explanation for the maintenance of biodiversity. Whether these differences facilitate coexistence, which allows unequal competitors to remain in systems and thus maintain biodiversity, is still unclear.
View Article and Find Full Text PDF