Introduction: Female reproductive function depends on a choreographed sequence of hormonal secretion and action, where specific stresses such as inflammation exert profound disruptions. Specifically, acute LPS-induced inflammation inhibits gonadotropin production and secretion from the pituitary, thereby impacting the downstream production of sex hormones. These outcomes have only been observed in acute inflammatory stress and little is known about the mechanisms by which chronic inflammation affects reproduction.
View Article and Find Full Text PDFEndothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses.
View Article and Find Full Text PDFAims: We sought to clarify the role of ventriculo-arterial (V-A) coupling in the treatment of nonischemic dilated cardiomyopathy (NIDCM) by adding a mineralocorticoid receptor antagonist (MRA) to conventional anti-failure therapy.
Methods And Results: We employed cardiac magnetic resonance imaging to quantify left ventricular (LV) contractility and V-A coupling in normal subjects at rest (n = 11) and in patients with NIDCM (n = 12) before and after long term anti-failure therapy, in which MRA was added to conventional anti-failure therapy. After ≥6 months' treatment in NIDCM patients, LV volumes and mass decreased, and the LV ejection fraction increased from a median of 24% (17, 27) (interquartile range IQR) to 47 (42, 52) (P < 0.
Androgens can affect the reproductive axis of both sexes. In healthy women, as in men, elevated exogenous androgens decrease gonad function and lower gonadotropin levels; such circumstances occur with anabolic steroid abuse or in transgender men (genetic XX individuals) taking androgen supplements. The neuroendocrine mechanisms by which endogenous or exogenous androgens regulate gonadotropin release, including aspects of pulsatile luteinizing hormone (LH) secretion, remain unknown.
View Article and Find Full Text PDFThe mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane.
View Article and Find Full Text PDFA defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression.
View Article and Find Full Text PDFGonadotropin secretion, which is elicited by GnRH stimulation of the anterior pituitary gonadotropes, is a critical feature of reproductive control and the maintenance of fertility. In addition, activation of the GnRH receptor (GnRHR) regulates transcription and translation of multiple factors that regulate the signaling response and synthesis of gonadotropins. GnRH stimulation results in a broad redistribution of mRNA between active and inactive polyribosomes within the cell, but the mechanism of redistribution is not known.
View Article and Find Full Text PDFContext: In women with polycystic ovary syndrome (PCOS), 17-hydroxyprogesterone (17-OHP) responses to gonadotropin stimulation vary from increased to indistinguishable compared with normal controls.
Objective: To determine whether 17-OHP responses to recombinant-human chorionic gonadotropin (r-hCG) are individually correlated to the size of antral follicles among women with PCOS.
Design Setting And Participants: A prospective study conducted in 19 women with PCOS and 20 normal controls at an academic medical center.
Background: Mineralocorticoid receptor antagonist (MRA) treatment produces beneficial left ventricular (LV) remodeling in nonischemic dilated cardiomyopathy (NIDCM). This study addressed the timing of maximal beneficial LV remodeling in NIDCM when adding MRA.
Materials And Methods: We studied 12 patients with NIDCM on stable β-blocker and angiotensin-converting enzyme inhibitor/angiotensin receptor-blocking therapy who underwent cardiac magnetic resonance imaging before and after 6-31 months of continuous MRA therapy.
Objective: The prevalence of heart failure is increased 2-fold in patients with rheumatoid arthritis (RA); this is not explained by ischemic heart disease or other risk factors for heart failure. We hypothesized that in patients with RA without known heart disease, cardiac magnetic resonance imaging (cMRI) would detect altered cardiac structure, function, and fibrosis.
Methods: We performed 1.
An emerging body of evidence supports the concept that the pituitary is a site for integration of multiple physiological and metabolic signals that inform and modulate endocrine pathways. Multiple endocrine mediators of energy balance and adiposity are known to impinge on the neuroendocrine axis regulating reproduction. Observations in humans show that obesity is correlated with decreased gonadotropin secretion, and studies have also suggested that pituitary sensitivity to stimulation by gonadotropin-releasing hormone (GnRH) is decreased in obese individuals.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2017
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation.
View Article and Find Full Text PDFBackground: The myocardial longitudinal relaxation time (T1) on cardiac magnetic resonance imaging (CMR) can quantify myocardial fibrosis in the presence or absence of visually detectable late gadolinium (Gd) enhancement (LGE). Mineralocorticoid receptor antagonist (MRA) treatment produces beneficial remodeling in nonischemic dilated cardiomyopathy (NIDCM). We assessed the hypothesis that interstitial myocardial fibrosis measured with the use of CMR predicts left ventricular (LV) beneficial remodeling in NIDCM after heart failure (HF) treatment including MRAs.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) cardiomyopathy is a progressive disease for which there is no cure. Disease-specific therapies are needed that can be initiated before irreversible myocardial damage ensues. In order to evaluate therapeutic efficacy, surrogate endpoints other than ejection fraction must be found.
View Article and Find Full Text PDFThe appropriate control of synthesis and secretion of the gonadotropin hormones LH and FSH by pituitary gonadotropes is essential for the regulation of reproduction. The hypothalamic neuropeptide GnRH is the central regulator of both processes, coordinating secretion with transcription and translation of the gonadotropin hormone subunit genes. The MAPK family of second messengers is strongly induced in gonadotropes upon GnRH stimulation, and multiple pathways activate these kinases.
View Article and Find Full Text PDFObjective: To evaluate the reproducibility of first-pass contrast-enhanced cardiac MR (CMR) myocardial perfusion imaging in patients with non-ischaemic dilated cardiomyopathy (NIDCM).
Design: Prospective observational study.
Setting: Single centre, tertiary care hospital.
Background: Left ventricular (LV) energy supply-demand imbalance is postulated to cause "energy starvation" and contribute to heart failure (HF) in nonischemic dilated cardiomyopathy (NIDCM). Using cardiac magnetic resonance (CMR) and [(11)C] acetate positron emission tomography (PET), we evaluated LV perfusion and oxidative metabolism in NIDCM and the effects of spironolactone on LV supply-demand relations.
Methods And Results: Twelve patients with NIDCM underwent CMR and PET at baseline and after ≥6 months of spironolactone therapy added to a standard HF regimen.
The objective of the study was to perform a retrospective pilot study to evaluate the potential of myocardial T1 in assessment of Duchenne muscular dystrophy (DMD) cardiomyopathy. Early identification of DMD cardiac disease, particularly myocardial fibrosis, would allow earlier therapy, potentially improving outcomes. Shortened myocardial T1 measured by cardiac MRI (CMR) is a measure of cardiac fibrosis that may be detected before late gadolinium enhancement (LGE).
View Article and Find Full Text PDFBackground: Cardiac magnetic resonance (CMR) and [(11)C]acetate positron emission tomography (PET) were used to assess the hypothesis that patients with nonischemic dilated cardiomyopathy (NIDCM) have decreased subendocardial perfusion reserve and impaired oxidative metabolism, consistent with the concept of "energy starvation" in heart failure (HF).
Methods And Results: CMR myocardial perfusion was evaluated in 13 NIDCM patients and 15 control subjects with coronary risk factors and normal myocardial perfusion. The NIDCM patients underwent [(11)C]acetate PET.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling.
View Article and Find Full Text PDFThe neuropeptide gonadotropin-releasing hormone stimulates synthesis and secretion of the glycoprotein gonadotropic hormones and activates the unfolded protein response, which causes a transient reduction of endoplasmic reticulum-associated mRNA translation. Hormone-treated cell extracts were fractionated to resolve mRNA in active polyribosomes from mRNA in inactive complexes. Quantitative real-time PCR and expression array analysis were used to determine hormone-induced redistribution of mRNAs between fractions and individual mRNAs were found to be redistributed differentially.
View Article and Find Full Text PDFThe study of gene expression in gonadotropes has largely focused on the variety of mechanisms regulating transcription of the gonadotropin genes and ancillary factors that contribute to the overall phenotype and function of these cells in reproduction. However, there are aspects of the response to GNRH signaling that are not readily explained by changes at the level of transcription. As our understanding of regulation at the level of mRNA translation has increased, it has become evident that GNRH receptor signaling engages multiple aspects of translational regulation.
View Article and Find Full Text PDF