A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam.
View Article and Find Full Text PDFHeteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge-transfer effect between two strongly correlated oxides, Sm Nd NiO (SNNO) and La Sr MnO (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field-effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single-layer SNNO and bilayer SNNO/LSMO channels is induced.
View Article and Find Full Text PDF