Publications by authors named "Mark A J M Hendriks"

Background: CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability.

View Article and Find Full Text PDF

PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO).

View Article and Find Full Text PDF

Typically, anticancer CD8 T cells occur at low frequencies and become increasingly impaired in the tumor micro environment. In contrast, antiviral CD8 T cells display a much higher polyclonality, frequency, and functionality. In particular, cytomegalovirus (CMV) infection induces high numbers of 'inflationary' CD8 T cells that remain lifelong abundantly present in CMV-seropositive subjects.

View Article and Find Full Text PDF

Cancer cells exploit CD47 overexpression to inhibit phagocytic elimination and neoantigen processing via the myeloid CD47-SIRPα axis and thereby indirectly evade adaptive T cell immunity. Here, we report on a hitherto unrecognized direct immunoinhibitory feature of cancer cell-expressed CD47. We uncovered that in response to IFNγ released during cognate T cell immune attack, cancer cells dynamically enhance CD47 cell surface expression, which coincides with acquiring adaptive immune resistance toward pro-apoptotic effector T cell mechanisms.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (EVs) carry potent immunosuppressive factors that affect the antitumor activities of immune cells. A significant part of the immunoinhibitory activity of EVs is attributable to CD73, a GPI-anchored ecto-5'-nucleotidase involved in the conversion of tumor-derived proinflammatory extracellular ATP (eATP) to immunosuppressive adenosine (ADO). The CD73-antagonist antibody oleclumab inhibits cell surface-exposed CD73 and is currently undergoing clinical testing for cancer immunotherapy.

View Article and Find Full Text PDF

Cancer cells overexpress CD47 to subvert phagocytic elimination and evade immunogenic processing of cancer antigens. Moreover, CD47 overexpression inhibits the antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC) activities of therapeutic anticancer antibodies. Consequently, CD47-blocking antibodies have been developed to overcome the immunoevasive activities of cancer cell-expressed CD47.

View Article and Find Full Text PDF

Reactivation of functionally-impaired anticancer T cells by programmed cell death protein 1 (PD-1) and programmed cell death receptor ligand-1 (PD-L1)-blocking antibodies shows prominent therapeutic benefit in advanced melanoma and patients with non-small cell lung cancer. However, current PD-L1-blocking antibodies lack intrinsic tumor selectivity. Therefore, efficacy may be reduced resulting from on-target and off-tumor binding to PD-L1-expressing normal cells.

View Article and Find Full Text PDF

Here, we report on a novel bispecific antibody-derivative, designated RTX-CD47, with unique capacity for CD20-directed inhibition of CD47-SIRPα "don't eat me" signaling. RTX-CD47 comprises a CD20-targeting scFv antibody fragment derived from rituximab fused in tandem to a CD47-blocking scFv. Single agent treatment with RTX-CD47 triggered significant phagocytic removal of CD20/CD47 malignant B-cells, but not of CD20/CD47 cells, and required no pro-phagocytic FcR-mediated signaling.

View Article and Find Full Text PDF