Appl Environ Microbiol
February 2024
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils.
View Article and Find Full Text PDFModes of occurrence of elements in coal are important because they can be used not only to understand the origin of inorganic components in coal but also to determine the impact on the environment and human health and the deposition process of coal seams as well. Statistical analysis is one of the commonly used indirect methods used to analyze the modes of occurrence of elements in coal, among which hierarchical clustering is widely used. However, hierarchical clustering may lead to misleading results due to its limitation that it focuses on the clusters of elements rather than a single element.
View Article and Find Full Text PDFThe data in this report are associated with "Characterization of Produced Water and Surrounding Surface Water in the Permian Basin, the United States" (Jiang et al. 2022) and include raw data on produced water (PW) quality and Pecos River water quality in the Permian Basin, which is one of the major oil and gas producing areas in the U.S.
View Article and Find Full Text PDFWastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs.
View Article and Find Full Text PDFA thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents.
View Article and Find Full Text PDFTracing produced water origins from wells hydraulically fractured with freshwater-based fluids is sometimes predicated on assumptions that (1) each geological formation contains compositionally unique brine and (2) produced water from recently hydraulically fractured wells resembles fresher meteoric water more so than produced water from older wells. These assumptions are not valid in Williston Basin oil wells sampled in this study. Although distinct average Ra/Ra ratios were found in water produced from the Bakken and Three Forks Formations, average δH, δO, specific gravity, and conductivity were similar but exhibited significant variability across five oil fields within each formation.
View Article and Find Full Text PDFReleases of oil and gas (OG) wastewaters can have complex effects on stream-water quality and downstream organisms, due to sediment-water interactions and groundwater/surface water exchange. Previously, elevated concentrations of sodium (Na), chloride (Cl), barium (Ba), strontium (Sr), and lithium (Li), and trace hydrocarbons were determined to be key markers of OG wastewater releases when combined with Sr and radium (Ra) isotopic compositions. Here, we assessed the persistence of an OG wastewater spill in a creek in North Dakota using a combination of geochemical measurements and modeling, hydrologic analysis, and geophysical investigations.
View Article and Find Full Text PDFThe Utica and Marcellus Shale Plays in the Appalachian Basin are the fourth and first largest natural gas producing plays in the United States, respectively. Hydrocarbon production generates large volumes of brine ("produced water") that must be disposed of, treated, or reused. Though Marcellus brines have been studied extensively, there are few studies from the Utica Shale Play.
View Article and Find Full Text PDFWater wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane.
View Article and Find Full Text PDFThe development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia.
View Article and Find Full Text PDFA U.S. map of water volumes used to hydraulically fracture oil and gas wells, 2011-2014Hydraulic fracturing water volumes differ regionally across the U.
View Article and Find Full Text PDFAtmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S.
View Article and Find Full Text PDFGround-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires.
View Article and Find Full Text PDFCarbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr.
View Article and Find Full Text PDFMercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil.
View Article and Find Full Text PDFOne pathway for release of mercury (Hg) from naturally enriched sites is emission to the atmosphere. Elemental Hg, when emitted, will enter the global atmospheric pool. In contrast, if reactive gaseous Hg or Hg2+ (as HgCl2, HgBr2, or HgOH2) is formed, it will most likely be deposited locally.
View Article and Find Full Text PDFWith the development of analytical capabilities that allow for almost real time measurement of mercury concentrations in air, the fluxes of mercury between environment compartments is being more carefully scrutinized. Recent advances have demonstrated that the mercury cycle is much more complicated than previously realized. This study quantified the mercury emissions from three areas with low levels of mercury enrichment associated with precious and base metal mineralization and recent volcanic/geothermal activity.
View Article and Find Full Text PDF