A SEND toxicology data transformation, harmonization, and analysis platform were created to improve the identification of unique findings related to the intended target, species, and duration of dosing using data from multiple studies. The lack of a standardized digital format for data analysis had impeded large-scale analysis of in vivo toxicology studies. The CDISC SEND standard enables the analysis of data from multiple studies performed by different laboratories.
View Article and Find Full Text PDFImplementation of the Clinical Data Interchange Standards Consortium (CDISC)'s Standard for Exchange of Nonclinical Data (SEND) by the United States Food and Drug Administration Center for Drug Evaluation and Research (US FDA CDER) has created large quantities of SEND data sets and a tremendous opportunity to apply large-scale data analytic approaches. To fully realize this opportunity, differences in SEND implementation that impair the ability to conduct cross-study analysis must be addressed. In this manuscript, a prototypical question regarding historical control data (see Table of Contents graphic) was used to identify areas for SEND harmonization and to develop algorithmic strategies for nonclinical cross-study analysis within a variety of databases.
View Article and Find Full Text PDFThe Standard for Exchange of Nonclinical Data (SEND) identifies an approach for representing nonclinical data in a structured format which has been widely adopted by the pharmaceutical industry as it is required for data submission to the United States Food & Drug Administration (US FDA). The SEND Implementation Guide (SENDIG) allows for considerable flexibility in how data is represented; interpretation of these guidelines has led to significant variability in the approach to SEND dataset creation. The purposes of this manuscript are to identify common variability in certain SEND domains and to describe how variability can be managed to enable valuable cross-study analysis use cases.
View Article and Find Full Text PDFRecently there is increased regulatory interest in the assessment of physical dependence and withdrawal as part of the safety assessment for novel therapeutic entities. Choosing appropriate and sensitive parameters to detect withdrawal syndromes, and relevant positive control comparator drugs that can be administered in the same manner as the test agent, are critical study design elements. Pilot studies to determine the effects of oral ketamine in cynomolgus monkeys during, and following cessation of treatment, were explored.
View Article and Find Full Text PDFSpecific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia.
View Article and Find Full Text PDFCadmium toxicity has been evaluated in a number of in vivo and in vitro toxicological studies. In vivo Cd toxicity exhibits sexual dimorphism with females being more susceptible to Cd uptake, accumulation, and toxicity in the liver. Research to date does not explain why females are more sensitive to Cd-induced hepatotoxicity.
View Article and Find Full Text PDF