Our objective was to determine if the menstrual cycle affected expiratory resistance developed during progressive incremental exercise in females. Eleven females (age = 19.7 ± 1.
View Article and Find Full Text PDFIt is commonly held that the structural capacity of the normal lung is "overbuilt" and exceeds the demand for pulmonary O2 and CO2 transport in the healthy, exercising human. On the other hand, the adaptability of pulmonary system structures to habitual physical training is substantially less than are other links in the O2 transport system. Accordingly, in some highly fit, and even in some not so fit habitually active individuals, the lung's diffusion surface, airways, and/or chest-wall musculature are underbuilt relative to the demand for maximal O2 transport.
View Article and Find Full Text PDFJ Appl Physiol (1985)
July 2002
We previously compared the effects of increased respiratory muscle work during whole body exercise and at rest on diaphragmatic fatigue and showed that the amount of diaphragmatic force output required to cause fatigue was reduced significantly during exercise (Babcock et al., J Appl Physiol 78: 1710, 1995). In this study, we use positive-pressure proportional assist ventilation (PAV) to unload the respiratory muscles during exercise to determine the effects of respiratory muscle work, per se, on exercise-induced diaphragmatic fatigue.
View Article and Find Full Text PDFJ Appl Physiol (1985)
June 2002
We hypothesized that long-term facilitation (LTF) is due to decreased upper airway resistance (Rua). We studied 11 normal subjects during stable non-rapid eye movement sleep. We induced brief isocapnic hypoxia (inspired O(2) fraction = 8%) (3 min) followed by 5 min of room air.
View Article and Find Full Text PDF