While mining provides valuable metals and minerals to meet societal demands, it can cause environmental contamination from the residuals (i.e., tailings) of mining.
View Article and Find Full Text PDFMicronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms.
View Article and Find Full Text PDFTen agronomic plant species were exposed to different concentrations of nano-titanium dioxide (nTiO2 ) or nano-cerium oxide (nCeO2 ) (0 μg/mL, 250 μg/mL, 500 μg/mL, and 1000 μg/mL) to examine potential effects on germination and early seedling development. The authors modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to 2 common metal oxide ENMs.
View Article and Find Full Text PDFAtmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years.
View Article and Find Full Text PDFConcerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.
View Article and Find Full Text PDFWe conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.
View Article and Find Full Text PDFSampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use.
View Article and Find Full Text PDF