Publications by authors named "Marjorie Carlson"

Pancreatic ductal adenocarcinoma (PDA) is an extremely metastatic and lethal disease. Here, in both murine and human PDA, we demonstrate that extracellular matrix architecture regulates cell extrusion and subsequent invasion from intact ductal structures through tumor-associated collagen signatures (TACS). This results in early dissemination from histologically premalignant lesions and continual invasion from well-differentiated disease, and it suggests TACS as a biomarker to aid in the pathologic assessment of early disease.

View Article and Find Full Text PDF

Background & Aims: Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, resulting in the up-regulation of hypoxia inducible factor 1 alpha (HIF1A), which promotes the survival of cells under low-oxygen conditions. We studied the roles of HIF1A in the development of pancreatic tumors in mice.

Methods: We performed studies with Kras;Trp53;Pdx1-Cre (KPC) mice, KPC mice with labeled pancreatic epithelial cells (EKPC), and EKPC mice with pancreas-specific depletion of HIF1A.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) remains one of the deadliest forms of cancer, in part, because it is largely refractory to current therapies. The failure of most standard therapies in PDA, as well as promising immune therapies, may be largely ascribed to highly unique and protective stromal microenvironments that present significant biophysical barriers to effective drug delivery, that are immunosuppressive, and that can limit the distribution and function of antitumor immune cells. Here, we utilized stromal reengineering to disrupt these barriers and move the stroma toward normalization using a potent antifibrotic agent, halofuginone.

View Article and Find Full Text PDF

Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored.

View Article and Find Full Text PDF

In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively.

View Article and Find Full Text PDF

Rationale: Bone marrow (BM) cell therapy for ischemic heart disease (IHD) has shown mixed results. Before the full potency of BM cell therapy can be realized, it is essential to understand the BM niche after acute myocardial infarction (AMI).

Objective: To study the BM composition in patients with IHD and severe left ventricular (LV) dysfunction.

View Article and Find Full Text PDF

Rationale: The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs) to discover pathways in heart failure (HF).

Objective: The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD).

Methods And Results: BEDTools v2.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans are abundant matrix and membrane molecules. Smooth muscle specific deletion of one heparan sulfate biosynthetic enzyme, N-deacetylase-N-sulfotransferase1 leads to decreased vascular smooth muscle cell proliferation, and vascular wall thickness. We hypothesized that this may lead to changes in blood pressure in conscious mice.

View Article and Find Full Text PDF

Moderate improvements in cardiac performance have been reported in some clinical settings after delivery of bone marrow mononuclear cells to patients with cardiovascular disease. However, mechanistic insights into how these cells impact outcomes are lacking. To address this, the National Heart, Lung and Blood Institute (NHLBI) Cardiovascular Cell Therapy Research Network (CCTRN) established a Biorepository Core for extensive phenotyping and cell function studies and storing bone marrow and peripheral blood for 10 years.

View Article and Find Full Text PDF

Proteoglycan core proteins are linked to four different classes of linear sugar chains referred to as glycosaminoglycans. Heparan sulfate constitutes one of these classes of glycosaminoglycans, and has been shown to be important in developmental processes as well as disease. We designed a low-density gene expression array to identify expression levels of heparan sulfate biosynthetic enzymes and proteoglycan core proteins in the aorta of late stage embryos (E18.

View Article and Find Full Text PDF

Objective: The goal of this study was to test the contributing role of increasing glucose uptake in vascular smooth muscle cells (VSMCs) in vascular complications and disease.

Methods And Results: A murine genetic model was established in which glucose trasporter 1 (GLUT1), the non-insulin-dependent glucose transporter protein, was overexpressed in smooth muscle using the sm22α promoter. Overexpression of GLUT1 in smooth muscle led to significant increases in glucose uptake (n=3, P<0.

View Article and Find Full Text PDF

Background: Circulating cardiac troponin T, a marker of cardiomyocyte injury, predicts adverse outcome in patients with heart failure (HF) but is detectable in only a small fraction of those with chronic stable HF. We assessed the prognostic value of circulating cardiac troponin T in patients with stable chronic HF with a traditional (cTnT) and a new precommercial highly sensitive assay (hsTnT).

Methods And Results: Plasma troponin T was measured in 4053 patients with chronic HF enrolled in the Valsartan Heart Failure Trial (Val-HeFT).

View Article and Find Full Text PDF