The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate.
View Article and Find Full Text PDFThis paper presents three devices suitable for the preclinical application of hyperthermia via the simultaneous high-resolution imaging of intratumoral events. (Pre)clinical studies have confirmed that the tumor micro-environment is sensitive to the application of local mild hyperthermia. Therefore, heating is a promising adjuvant to aid the efficacy of radiotherapy or chemotherapy.
View Article and Find Full Text PDFPreclinical studies have shown that application of mild hyperthermia (40-43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat-sensitive nanoparticles).
View Article and Find Full Text PDFThe purpose of this study was to optimize the manufacturing of dissolving microneedles (dMNs) and to increase the antigen loading in dMNs to investigate the effect on their physicochemical properties. To achieve this, a novel single-array wells polydimethylsiloxane mold was designed, minimizing antigen wastage during fabrication and achieving homogeneous antigen distribution among the dMN arrays. Using this mold, hyaluronan (HA)-based dMNs were fabricated and tested for maximal ovalbumin (OVA) content.
View Article and Find Full Text PDF